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elastic materials. The plane strain mechanical crack tip field was examined under
the assumptions of small scale nonlinearity using the finite element method. The
effect of the constitutive law on the numerical results was determined by using
two different invariants of the Rivlin constitutive model: the Mooney-Rivlin law
and the third order invariant. Crack tip field quantities from both constitutive
laws agreed with the nonlinear asymptotic solution for this problem, although the
region of dominance was small. The nature of the nonlinear crack tip zone was
characterized both geometrically and kinematically.,Application of a local cavita-
tion criterion to the mechanical crack tip field showe a relationship between the
physical properties of a carbon black filled natural rubber and a critical cavitation
event ahead of the crack tip to the amount of subeitical crack growth prior to
crack propagation. - t

Experiments were also performed to study the thickness effect under near plane
strain conditions. Deeply notched cylindrical dumbbell test specimens made from
a carbon black filled elastomer were loaded in tension until fracture at finite
strains. A failure process consisting of extensive blunting of the crack tip, delam-
ination, and stable crack extension normal to the load direction (i.e., orthogonal
to the pre-existing crack plane) was observed. This process was initialized under
small loads and continued until ultimate rupture of the test specimen into two
pieces. As the specimen elongated, the thickness of successive layers of delami-
nated material and the incremental amount of stable crack extension increased.
Load and CMOD histories were smooth and could not be related to the local-
ized material failure occurring under deformation. The value of the J-integral at
catastrophic rupture was 400kJ/m 2 . A model was presented to explain this failure
process.
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Chapter 1

Introduction

1.1 Scope of Investigation

Elastomers are polymers, consisting of long flexible chainlike molecules, intercon-
nected by crossbonds, a phenomenon referred to as crosslinking. Their mechanical
behavior can be classified as nonlinear elastic. Material properties, such as the
Young's modulus are small comparcd to metals and ceramics. Typical values of
the Young's modulus are of the order 10 MPa for rubber while for metals, the
Young's modulus is much higher, approximate1 v 104 MPa. Elastomers are nearly
incompressible materials with a Poisson's ratio close to 1/2 and high bulk moduli
in comparison to their shear or Young's moduli.

This investigation identifies a thickness effect in the Mode I fracture of elastomer
materials. Interest in this subject arose from premature internal failure of Army
tank track pads, which are thick elastomer blocks bonded to steel plates. While
much fracture research has been performed on thin elastomer sheets, few ex-
perimental or numerical studies in the literature have addressed failure of thzck
elastomer materials.

A thickness effect in the failure of metals [1] and certain ductile polymers [2] has
been documented, suggesting that thickness may also influence fracture in elas-
tomers. This effect, though, may not be the same as that found in other materials.
Void formation in elastomers has been shown to be a thickness dependent pro-
cess, where the conditions for void formation, e.g., high triaxiality of stress, can
be enhanced by increasing the thickness of the test specimen [3,41.

Both numerical and experimental studies were performed to characterize this
thickness effect. First, a computational analysis of a Mode I crack under plane

10



1.2 APPROACH 11

-train conditions determined the nonlinear elastic crack tip field and its region of
,omiinance when the nonlinear elastic field is confined to a small region around the
Crack tip. The results were compared to the nonlinear elastic asymptotic solution
5.61 for this problem. A local cavitation criterion was also applied to determine
the location of void formation in front of the crack tip. Previous numerical studies
[7] of a .Mode I plane strain crack have been limited to only determining the value
of the J-integral and did not examine the stress field close to the crack tip.

In addition, experiments were conducted to investigate the failure process, under
near plane strain conditions, in a carbon black filled elastomer. A conventional
test specimen for examining failure in thick elastomers under near plane strain
conditions has not been reported in the literature so that an appropriate test
specimen had to be designed. The fracture process was observed both qualitatively
and quantitatively, contirning that a thickness effect is present in the failure mode
of these materials.

As a prelude to the research reported here, the failure process in thin elastomer
sheets will be described and literature supporting the premise that thickness in-
Hluences the mode of failure in hyperelastic materials will be presented.

1.2 Approach

A fracture mechanics approach was taken in this investigation. Material behavior
is described by continuum mechanics, and here it is assumed that elastomers
are homogeneous and isotropic. The underlying basis of fracture mechanics is
that a unique singular stress strain field exists at the crack tip and that the
amplitude of this singular field can sometimes be determined from energy balance
considerations. A critical energy release rate, G., is defined where crack extension
and material failure will occur when the energy release rate exceeds G.. This
approach is limiting in the sense that elastomers can exhibit molecular anisotropy
and because stresses and strains in elastomers are temperature and rate dependent
functions, a consequence of viscoelasticity. In addition, viscoelastic mechanisms
play an important role in failure processes [8.9].

Another approach taken to describe fracture in these material is the molecular
theory of fracture [10.11.91 which assumes that failure occurs through the breakage
of primary bonds or through the breakage of chains at or between crosslinks. The
time and temperature dependence of the stress fields can be explained by the
deformation behavior of the molecules and the finite extensibility of the molecular
strands. This approach employs a stress ba-sed failure criterion.
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1.3 Hysteresis

Elastomers are self-reinforcing in that they possess built-in mechanisms which
delay and retard crack growth. The high extensibility and chain alignment of
rubbers allow large strains to exist at the crack tip, promoting crack tip blunting.
During tensile deformations at slow deformation rates, elastomer molecules may
slide apart and fresh surface area is created by surface enlargement [9). (This
phenomenon is also found in knotty tearing, to be discussed below.) Energy dissi-
pating mechanisms, or hysteresis, also assist crack tip blunting and in subcritical
crack growth, hysteresis may decrease the intensity of the crack tip stress field by
weakening the material at the crack tip (11]. At rupture, the energy density is
directly related to the amount of hysteresis measured in the material [12]. Because
elastomers are able to dissipate energy through hysteresis, less energy is available
for crack growth and rupture [8].

Hysteresis is attributed to many factors, such as stress softening or the Mullins
effect, internal friction, strain-induced crystallization, structural breakdown, and
the presence of two-phase material systems, such as copolymers [8,2]. Each of these
factors contributes to fracture resistance. A final source of energy dissipation is
heat generated under fatigue loading.

Internal friction or viscosity refers to the rearrangement of molecular chains as
they deform. This phenomenon is strongly temperature dependent. The viscosity
characterizes the immobility of molecular segments and decreases with increasing
temperature. Viscous stresses at constant temperature also depend on the rate
of deformation and are more dominant at high rates. At the glass transition
temperature, T., the viscosity becomes sufficiently small, while at temperatures
below T., elastomers are more stiff and will fracture under smaller deformations.

When an elastomer is stretched to a high strain and then unloaded, the unloading
stress strain path is below the loading path, as in Figure 1.1, dissipating energy
during the deformation cycle. This phenomenon is called stress softening or the
Mullins effect. For filled rubbers, permanent set is also present where, upon
completion of a load deformation cycle, a small but measurable amount of residual
deformation remains. In crack growth, the material close to the crack undergoes
a full load deformation cycle. Referring to Figure 1.2, material at the crack tip
is highly deformed, and when the crack extends, load is removed from this highl:y
deformed material as the new traction-free crack surface is created. Consequently,
a volume element of material at the crack tip undergoes a load deformation cycle
as it becomes new surface area during crack extension.
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Strain-induced crystallization refers to the formation of nonpermanent microcrys-
ralline regions in natural rubbers undergoing large deformations. When load is
removed, the crystalline regions melt. Regions of strain-induced crystallization
have been found at the highly deformed crack tip [8,91. However. as the crack ex-
tends, microcrystals melt and reform, dissipating energy in the process. Rubbers
exhibiting this type of behavior, such as natural rubbers, have greater tearing
energies than those such as SBR, which do not strain-crystallize.

Structural breakdown of a filled elastomer occurs whe, long chains of carbon
black or other filler particles and/or bonds between th iler particles and the
rubber molecules are broken under deformation. The energy expended in struc-
tural breakdown is irreversible.

1.4 Tearing Energy

1.4.1 Definition

"Iivlin and Thomas [131 developed the tearing energy theory by extending the
Griffith fracture criterion to include irreversible energy losses. Given a crack of
length L. the tearing energy, T, is defined as

(a \-Z (i

where (QU/&L) denotes the change in potential energy per unit crack extension
at constant load, P, and t is the specimen thickness. Equation (1.1) simply
states that crack propagation in rubber occurs when the energy required for crack
growth exceeds the tearing energy, which includes the surface energy required for
the creation of new fracture surfaces, as well as localized irreversible energy losses
at the crack tip. The tearing energy is equivalent to G, when crack extension
occurs.

The tearing energy has been experimentally proven independent of the load condi-
tions and in-plane aspects of specimen geometry [131 for quasi-static crack growth.
The test specimens, to be discussed below, are designed such that small amounts
of irreversible elasticity are present only at the crack tip, even though large de-
formations may be found throughout the test specimen.

The magnitude of the tearing energy at the onset of tearing is T,. As the test
specimen is slowly extended, small amounts of crack extension, approximately
0.01 mm. are found under small loads. As the load is increased, the crack extends
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E

Figure 1.1: A loading and unloading path in an elastomer.
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Highly deformed
A material at the

crack tip (A).

L+ SL J

A Highly deformed
-* material (A) is now

part of the traction
free crack surface
through crack
extension.

Figure 1.2: Material at the crack tip undergoing a load deformation cycle.
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further. Catastrophic rupture occurs when the crack suddenly grows by several
millimeters. When additional load is applied, the crack continues to grow by this
amount. The tearing energy, T,, is measured when catastrophic rupture begins
and is considered a material property.

The dependence of the the tearing energy on the rate of crack propagation, i.e.,
the rate at which the specimen is deformed, and the temperature [14,15] demon-
strate that a single value of the tearing energy required for crack propagation
does not exist for a given elastomer. Typical master curves for the tearing energy,
Figure 1.3, illustrates this dependence. At high strain rates and low tempera-
tures, experimentally measured values of the tearing energy are higher compared
to those at low strain rates and high temperatures, although the slopes of these
curves may not be steadily increasing with temperature or rate of tearing.

1.4.2 Test Specimens for Measuring Tearing Energy

The test specimens most commonly used to measure tearing energy in thin elas-
tomer sheets are the single-edge crack, the pure shear, and the trouser tear spec-
imens. Specimen geometries are shown in Figure 1.4 as well as equations for
determining T,. These expressions for T, are based on the assumptions that the
region of irreversible energy losses are confined to a small region at the crack
tip and that L is large compared to the specimen thickness. In addition, these
specimens were designed so that large regions exist where simple deformations are
present, i.e., simple extension in the single-edge crack specimen and pure shear
in the pure shear specimen. The single-edge crack and the pure shear specimen
measure the tearing energy under Mode I failure while the trouser tear specimen
measures the tearing energy in anti-plane shear, Mode III. In Mode III, T, is
approximately 50% greater than in Mode I [16].

1.4.3 Equivalence to J-Integral

For a stationary crack extending in the x1-direction and oriented as in Figure 1.5.
the path independent J-integral (17] can be represented as

J = fr [Wn - su,1 JdS , (1.2)

where W denotes the strain energy, n1 is the unit normal in the x1 direction, s,
is the nominal traction vector, and ut is the displacement field. The J-integral
is evaluated along any suitable contour, r, which encloses the crack tip and dS
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(a) SBR gum vulcanizate (shaded portion denotes region where stick-slip tearing
is found.)

Figure 1.3: Tearing energy surface for an SBR gum vulcanizate and its dependence
on the temperature and the rate of tearing. From Greensmith, H.W., Rupture of
rubber. VII. "Comparison of Tear and Tensile Rupture Measurement", J. App.
Poly. Sci., 3(8), (1960), p.189.
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(b) Carbon black filled SBR.-

Vigue i 3'rearing energy surface for an SBR gum vulcanizate and its dependence
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(c) Natural gum rubber vulcanizate.

Figure 1.3: Tearing energy surface for an SBR gum vulcanizate and its dependence
on the temperature and the rate of tearing.
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L

Single-Edge Crack

T = 2 .7LTV

1I/2

, = Extension ratio at onset of crack growth.

IV, = Strain energy density at onset of crack growth.

(a) Single-edge crack specimen.

Figure 1.4: Test geometries used to measure tearing energy
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(b) Pure-shear specimen.

Figure 1.4: Test geometries used to measure tearing energy.
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P, = Load at onset of crack growth.

h = Specimen thickness.
Ac = Extension ratio at onset of crack growth in arms.

W = Strain energy density at onset of crack growth in arms.

(c) Trouser-tear specimen.

Figure 1.4: Test geometries used to measure tearing energy.
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is an element along F. The equivalence of the J-integral to the tearing energy.
equation (1.1), was proven by Chang [18]. The significance of both the J-integral

ind the tearing energy in nonlinear elasticity is that they are fracture character-

izing parameters. Experimentally lneasured far from the crack tip. the value of
the tearing energy shows a one to one correspondence with the strain distribution
at the tip of a thin notch of arbitrary width [19].

1.5 Crack Propagation

The failure mode in thin elastomer sheets has been well documented [8,9,2]. Fail-
ure initializes in a region of high stress concentrations with the enlargement of
a flaw or the formation of a crack. The crack then grows at a constant or pro-
gressively increasing rate until a critical instability occurs. The test specimen
ultimately fails by rupture normal to the maximum principal stress. The size
of naturally occurring flaws which govern the fracture process is estimated as
- 10- 3 cm [20] and their presence under deformation causes local rupture of
isolated molecules or crosslinks.

As natural rubber deforms, molecular chain alignment and crystallization begins
when A > 3 [9]. These mechanisms enhance crack tip blunting and retard crack
growth. Other mechanisms which decrease the amount of energy available for
crack propagation, discussed previously, may also be present.

Under monotonic loading, crack propagation can be divided into three categories
Ibased on the magnitude of the tearing energy, T. Below To, 40 J/m 2 [8], no crack
growth is found and elastic loading of the crack tip occurs without crack extension.
Subcritical crack growth occurs when To < T < T, and initiates by reorientation
and slippage of molecular chains or void growth. Elastic loading continues but.
due to crack extension, viscoelasticity and hysteresis influence the intensity of the
crack tip field. Because subsequent material response is softer, subcritical crack
growth is stable [11]. Finally, when T exceeds T, the crr-k extends by a large
amount, several millimeters, ultimately leading to rupture.

In unfilled elastomers, steady or smooth crack propagation is typically observed,
where crack propagation occurs directly in front of the crack, with smooth tear
surfaces. As crack extension proceeds, small fluctuations in the load can be found,
as shown in Figure 1.6, while the crack surfaces becomes increasingly rough.
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Figure 1.5: Evaluation of the J-integral.
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1.5.1 The Effect of Fillers

Fine particulate fillers, such as carbon black, are commonly incorporated in rubber
compounds to increase their tensile strength and tear resistance. Filler particles,
of submicron diametral length, form aggregates which adhere to the elastomer.
The reinforcing effects of filler particles are constrained to a range of deformation
rates and temperatures, which are determined by the type of filler and elastomer
compound. The magnitude of the reInforcing effect is influenced by the concen-
tration of filler particles and volume concentrations of 0.3 to 0.5 typically produce
optimal strength strength and tear resistance properties.

The effects of fillers on fracture behavior are significant. First, filled elastomers
exhibit enhanced stress softening behavior, increasing the amount of dissipated
energy and lessening the amount of energy available for crack propagation. When
compared to the corresponding unfilled elastomer compound, both the tearing
energy and the strain energy at break are higher for a filled elastomer. The strain
energy at break can be divided into two components, that required for fracture
and that consumed by stress softening effects. While the energy required for
fracture is essentially the same for both a filled and the equivalent unfilled rubber
compound, the energy consumed by stress softening effects is much greater in
filled materials.

Failure processes in filled elastomers are different. Crack tip blunting is enhanced
by filler reinforcement and, as the crack propagates, crack extension does not
occur along a path but deviates at an angle away from the crack front and in
severe cases, the crack can propagate in the load direction. This deviation has
been attributed to hysteresis [21]. When crack extension occurs faster than the
rate at which the stresses can readjust to changes caused by hysteresis. the crack
will grow in the direction of maximum stress in a stationary stress field. After the

crack deviates, crack growth is arrested and then is reinitiated perpendicular to
the applied load.

The fracture surface of filled materials is rough and is characterized as knotty
tearing. The load history is not smooth but discontinuous, with regular variations
in load, Figure 1.6. Crack propagation is found at the maximum value of the load.
while crack arrest occurs at the minimum value of the order of that found for
smooth tearing of the unfilled elastomer. This type of crack propagation is termed
slp-stick and is found in the same range of deformation rates and temperatures
where filler reinforcement is present. Outside of this region, where the presence
of filler particles no longer enhances tensile strength and tear resistance, tear
behavior is smooth.
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Micrographs of crack propagation in filled and crystallizing rubbers show that
secondary branching has occurred, not only in the plane of the crack, but also
,o considerable depth on either side [9]. Secondary branching is attributed to
rupture of molecular chains or entanglements and further reduces the amount of
stored elastic energy in the crack tip region.

1.6 Cavitation

Cavitation is a failure process commonly found in elastomers. Under a critical
value of a dilitant stress or hydrostatic tension, a pre-existing microvoid will sud-
denly expand elastically and will continue to grow catastrophically until it is large
enough to relieve the hydrostatic tension. The vacuole is often formed near the
surface of an inclusion which is well bonded to the elastomer material. While
the elastomer has internally ruptured, it has not detached from the surface of the
inclusion. Cavitation precedes tearing, although the relationship between cavi-
tation and tearing is not understood. In tearing, strands of elastomer material
stretch across the crack tip and, although not proven experimentally, it has been
suggested that cavitation takes place ahead of the crack tip and that these strands
are formed by material between cavities 11.

Cavitation should be distinguished from dewetting, which refers to the detachment
of elastomer material from the surface of weakly bonded inclusions under load. In
dewetting, vacuoles are found at the surface of the inclusion, whereas in cavitation.
vacuoles are near the surface of the inclusion.

1.6.1 A Local Cavitation Criterion

A theoretical analysis of the cavitation process in an incompressible material has
been considered by Ball (221. For certain constitutive laws, an explicit formula
for calculating the critical value of the hydrostatic tension, P,,it, at cavitation
was derived through the application of a hydrostatic tensile stress on the surface
of a solid sphere. As this sphere undergoes a radial deformation, at P,,,t it is
energetically more favorable for a-void to form than for the sphere to continue to
deform radially.

Consider a solid sphere, with initial radius r 0 , composed of an isotropic, homo-
geneous, and incompressible material. Characterizing this material is the strain
energy function,

TV = IV(AI, A2 ,,\ 3 ) , (1.3)
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9C

TIME

Figure 1.6: Load timc curves demonstrating steady and stick-slip tearing for con-
stant rate of extension of the trouser test specimen. From Greensmith, H.W. and
A.G. Thomas, Rupture of rubber. III. "Determination of tear properties". J.
Poly. Sei., 18, (1955), p.1 9 3 .
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where A, are the principal stretch ratios. For an incompressible material,

\IA2A3 = I . (1.4)

The principal Cauchy stresses, 7,P are denoted by

7,j = A,- -9,1.
mJ - (15

given the pressure, p, introduced by the constraint of incompressibility.

A uniform tensile stress, P, is applied along the outer surface, at radius r0 .
The strain energy function representing this deformation can be expressed as
W(A-2 , A, A). Initially the sphere doe not deform due to incompressibility and
spherical symmetry, but, as 7' is increased, it becomes energetically more favor-
able for a spherical cavity to form when

rl 1 OW
Ii A3 - 1 a dA . (1.6)

This solution is based on the assumption that the Cauchy stress vanishes at the
center of the sphere, requiring that

___IOW

( -d 1 a dA (1.7)

exists and is finite for 6 > 1. If the integral in equation (1.7) does not converge,
then the critical value of the hydrostatic tension is infinity and cavitation in this
material would not occur. In addition, the stress state must be one of hydrostatic
tension as voids will not develop under hydrostatic compression.

Equation (1.6) represents a local cavitation criteria which can be applied to a crack
tip stress field to predict the site of cavitation. Here, the hydrostatic tension is
defined as

Pcr t . (1.8)

Cavitation will occur at the location in front of the crack tip where P equals ,

For a Neo-Hookean material, W is expressed as

W= L(A, +A,+A' - 3) (1.9)2

where M is the shear modulus at infinitesimal deformations. When this strain
energy function is substituted into equation (1.6), the critical hydrostatic tension
at cavitation is

Pci = 2 .5 p (1.10)
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Experimental and computational analysis have confirmed Ball's predictions in
elastomer materials. Oberth and Bruenner [23] conducted cavitation experiments
on polyurethane bars containing well bonded steel spheres, noting the critical
loads at which cavitation, found near the poles of the spheres. occurred. A finite
element snalysis f2 ] of the test specimen confirmed that the maximum value of
the hydrostatic stress is located near the poles of the spheres, and that, for a
Neo-Hookean material, the maximum value of the hydrostatic pressure was 2.5p
at the critical loads reported by Oberth and Bruenner [23].

Similar findings for cavitation were reported for cavitation in thin cylinders [3].
At small values of the applied tensile stress, an audible popping sound was associ-
ated with cavitation and an approximate stress analysis showed that the limiting
value of the hydrostatic tension was 2 .5p.. Again, a finite element analysis [24]
demonstrated that the state of stress at the center of the cylinder is nearly hy-
drostatic and that, when the local hydrostatic tension is 2 .5p, the numerically
applied load is consistent with the experimentally load reported at cavitation. An
experimental and computational study [25] of elastomer cubes under fatigue load-
ing showed that voids were found in the experimental specimens at numerically
predicted locations of maximum hydrostatic tension.

Experimental evidence also suggests that a thickness effect is present in the cavi-
tation of elastomers. When the thickness is varied as an experimental parameter,
test specimens with thicker geometries are associated with a limiting value of the
hydrostatic tension, 2.5p, for a Neo-Hookean material at cavitation, whereas for
thin specimens, cavitation occurs at higher stresses [3,4].

The size and distribution of inclusions can also influence void formation. In
these studies [4,26,27,28,29], larger applied loads at cavitation are associated with
smaller inclusions, either cylindrical or spherical, but decrease and approach a lim-
iting value as the size of the inclusion increases. In addition, when the distance
between two inclusions was varied, larger loads are required for void formation
between two closely spaced inclusions. As the distance between the the two inclu-
sions increases, the applied load at cavitation again decreases to a limiting value.
calculated at 2.5p for a Neo-Hookean material.

From these cavitation studies, it can be concluded that void formation occurs at
sites of maximum hydrostatic tension and that thickness influences the magnitude
of the hydrostatic tension. Now it will be shown that, on the basis of linear
elasticity, differences in triaxiality between the plane strain and plane stress crack
tip fields exist and that the triaxial tension is larger under plane strain conditions.
Consequently, cavitation should occur at a lower limiting value in thick specimens.
i.e., in plane strain.
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1.6.2 Plane Strain and the Effect of Thickness

In this section, a simplified model based on linear elasticity (1] will be used to
discuss the transverse constraint found in fracture, This model will illustrate the
effect of thickness in fracture and, although highly idealized, its main conclusions
are applicable to elastomer materials.

Consider a bar of incompressible materials subjected to a tensile stress. The bar
will strain in the longitudinal direction and contract in the transverse directions.
For an incompressible material, the Poisson's ratio, V, equals one-half and the
transverse strain is one half the longitudinal strain under infinitesimal loading.
If the bar is stretched to finite deformations by the stretch ratio A, the principal
stretch ratios, A,, become (A, 1/v/'A, 1/v'A).

In a thick plate containing a through thickness crack, high stresses and large
transverse strains are found at the crack tip. Along the crack faces, though, the
material is traction free and the transverse strain is absent. "Away from the crack
tip, the stresses are lower and the transverse strain is correspondingly smaller.
At the crack tip in Figure 1.7, a thin roll of material wants to contract in the
transverse direction, but the bulk of the material surrounding the tip will not allow
this contraction to occur. The transverse strain remains zero. As a consequence
of this constraint, there will be a tensile stress in the thickness direction. Here,
the transverse direction is the x3 direction and

E33 = 0 ,

0"33 = v(o"1 + 0+22)

(1.11)

This condition is termed plane strain.

Now consider a thin plate of the same material containing a crack of equal size.
Again. a tensile loading is applied in the longitudinal direction. Because the plate
is thin, the length of the roll of material that wants to contract at the crack tip
is smaller than its diameter. The material can easily contract and the transverse
strain is nonzero. The material at the crack tip is not constrained so that there
is no stress in the thickness direction and 033 equals zero. This condition is plane
stress.

The length of the roll of material that wants to contract equals the thickness of
the plate and its diameter will be proportional to the loading, refering to Fig-
ure 1.8. In plane strain, the thickness is large compared to the diameter of the
roll. Due to the variance of a33 in plane stress versus plane strain, cracks respond
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differently. In metals, the fracture toughness is higher in plane stress and depends
on the thickness as shown in Figure 1.9. When the thickness is large enough for
plane strain conditions to occur, the fracture toughness remains constant and is
termed KI, or the plane strain fracture toughness. If the diameter of the roll
of contracting material equals the thickness of the plate, plane stress conditions
are present. When this diameter is small, plane strain conditions are found be-
cause the transverse strain remains zero. The surrounding material prevents the
material at the crack tip from contracting freely.

The hydrostatic tension, P, is defined in linear elasticity as

ai_ (1.12 )
3

The hydrostatic tension is larger in plane strain compared to plane stress because
the a 33 stress component is nonzero. For a linear elastic incompressible material,

1
P = (all + '22) (plane strain),

(1.13)
1 (all + a 22 ) (plane stress).
3

At a given applied stress, a, the hydrostatic pressure is higher in plane strain. If
a cavitation criteria based on the hydrostatic pressure is considered, cavitation
should occur first in plane strain. Thus, the plane strain condition represents a
limiting condition for the onset of void growth.

Based on the premise that a thickness effect is present in the failure of metals.
it is suggested here that a thickness effect also is present in the failure f elas-
tomers. Preliminary evidence supporting this hypotheseis has been presented by
the experiments on void formation in these incompressible, or nearly incompress-
ible materials. A finite element study [7] of Mode I fracture in rubber sheets under
identical loading was conducted with both plane strain and plane stress bound-
ary conditions. Computed values of the J-integral were higher in plane strain
when compared to those in plane stress. Thus, computational and experimental
research indicate that a thickness effect may exist on a microscopic and a macro-
scopic level. It is the purpose of this investigation to experimentally determine if
failure is different in plane strain, although the thickness effect may not be the
same as that found in metals or other materials.
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Figure 1.7: Roll of material contracting at crack tip.
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Figure 1.8: Free yielding in plane stress (a), constrained yielding plane strain (b).
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Figure 1.9: KI, versus thickness in metals.



Chapter 2

Computational Investigation

2.1 Objectives

The- nonlinear asymptotic solution for a Mode I crack in plane strain will be ex-
amined in an incompressible material through a finite element analysis. Small
scale nonlinearity, where the nonlinear mechanical crack tip field is confined to a
small region surrounding the crack tip, will be assumed. The computational re-
sults will be compared to the nonlinear asymptotic solution derived by Knowles (5]
and Stephenson (6] for a Mooney-Rivlin material. The accuracy with which finite
element techniques can predict the nonlinear asymptotic field and the geometric
scale, over which the nonlinear asymptotic field is present, will be determined.

The effect of the constitutive law upon the finite element results will be found using
two forms of the Rivlin law: the linear representation of this law, known as the
Mooney-Rivlin law, and a model which includes higher order terms. Although
both forms of the Rivlin law accurately predict material behavior at small to
moderate deformations, the Mooney-Rivlin form, in contrast to the higher order
model, underestimates stresses at large deformations. As large deformations are
found at the crack tip, the differences found in the nonlinear asymptotic field
due to the choice of a constitutive model can become significant when relating
computational results to physically observed material behavior. Finally, criteria
for void nucleation in incompressible materials [22], will be examined through
the finite element results and a micromechanical failure model [30] to predict the
location of void nucleation in the nonlinear crack tip field.

35



2.2 A MODE I CRACK AND THE LINEAR ASYMPTOTIC FIELD 36

2.2 A Mode I Crack and the Linear Asymptotic
Field

Consider a body containing a through thickness stationary crack as in Figure 2.1.
Under Mode I loading, a tensile stress, a, is applied normal to the plane of the
crack. The faces or surfaces of the crack are traction free while the dominant
displacements along the crack face are normal to the plane of the crack. No
thermal or body forces are assumed to be present. A cartesian coordinate system is
introduced at the tip of the crack in the undeformed body, as shown in Figure 2.2,
where polar coordinates (r, 0) can be defined as

x =rcos(0) , x2=rsin(9) . (2.1)

The linear elastic asymptotic stress, as r --+ 0, is

I =- fi(o) (2.2)7'rr

where nominal stresses are denoted by, a,, assuming infinitesimal linear elasticity.
The stress intensity factor, K1, is a function of the crack length, the applied stress,
a, and the geometry of the body so that the influence of these quantities is found
through K1. The amplitude of the mechanical crack tip stress field is characterized
by K, in that two bodies of the same material, with cracks of different length
and different applied loads, will have identical mechanical crack tip stress fields.
equation (2.2), if their stress intensity factors are equal. For an infinite plate
containing a centrally located crack of length 2L, shown in Figure 2.3. the stress
intensity factor is

K, = aV'7 (2.3)

Written out explicitly, the in-plane stresses and displacements u, (Williams.[31])
in equation (2.2) are

Kt 0 30)sin0 3/2all = -- cos - sin r

KI 0 30.
0'33 = 72 cos~cosTsin + 0 °r') (2.4)

Kr - - - + )

22)
22=I -sin' +(o/)

v= - 2 2 2
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2.3 The Nonlinear Asymptotic Field

In the deformed configuration, Figure 2.4. a new coordinate system is introduced
at the crack tip such that the deformed coordinates, yi, are defined in terms of
the undeformed configuration as

Yi= X, + ui , or y =Fx , (2.5)

given the displacement field, u1 , and the deformation gradient, F,,.

Knowles [5], in conjunction with Sternberg, derived the nonlinear asymptotic solu-
tion for a Mode I crack in an incompressible material, based on the Mooney-Rivlin
constitutive model and assuming finite elasticity while Stephenson [6] expanded
this asymptotic crack tip field to include higher order terms. Their method of
solution, the formulation and resolution of a nonlinear eigenvalue problem, is pre-
sented in Appendix-A.

The Mode I plane strain asymptotic solution [5], for a Mooney-Rivlin material is

711 -- b(1 - cos9)
2

a2 -1

It - 1/2

7Lbr sin0 (2.6)

*2 1 9/ o 39)
Y, - brsin + r 2cos- o ,

2 (2ca/ 2 30 o2
Y2 - ar 1/2sin2 -+ dsin 3 _sin-

2 2 _ 2a 2/'

where the Cauchy stresses, ri, and the deformation field, yi, are referenced to
the undeformed polar coordinate system (r,9) at the crack tip, and a, b, and
d refer to load amplitude constants. When comparing the nonlinear asymptotic
solution, equation (2.6), to the linear elastic crack tip field, equation (2.4), the
most significant difference is that only r12 and Y2 are functions of the square root
of r. 722 dominates the stress field and possesses the most singular term, 1/r, but
it is not a function of angular extent, depending only on radial distance from the
crack tip. In contrast, rT is determined solely on angular extent and, for a given
angle, remains constant with increasing distance from the crack tip. Only r1 2 is a
function of both ,.-'/2 and 0, similar to the linear elastic shear stress.

Both Y, and Y2 are functions of both r and 9, while yi is directly proportional to r.
Along the crack front (9 = 0 degrees) and the crack face (9 = 180 degrees), the Y,
coordinate equals the x, coordinate, a consequence of incompressibility (V = 0.5)
as the linear elastic displacement, u1 , also vanishes at these angles.
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2.4 Small Scale Nonlinearity

[n a body of nonlinear incompressible material containing a crack, it is assumed
that the linear elastic stress field, equation (2.5), can be found in a region around
the crack tip, shown in Figure 2.5, if the applied loads are sufficiently small, i.e.,
only small geometry changes are present and material behavior approaches linear
elasticity[32,17]. These conditions are physically violated as r -- 0. The radius R*
will define a boundary such that, when r > R*, small geometry changes and linear
elasticity are appropriate assumptions.This region is termed K-dominant because
the value of the applied stress intensity factor will determine the amplitude of the
triaxial stress field. The size of this region is small compared to *he crack length
and the overall geometry of the body.

This K-dominant region encompasses a smaller nonlinear region much closer to
the crack tip, r < R*, called the fracture process zone, where cavitation can be
found. Finite deformations are now present and it is assumed that the nonlinear
asymptotic crack tip stress field (Knowles[5] and Stephenson[6) in equation (2.6)
will be located here. As r -- R*, the stresses gradually change from the nonlinear
elastic asymptotic field to the linear elastic field.

The radius R* will be arbitrarily but plausibly defined in terms of the deformation
gradient, F,,. Along R*,

0F. - 6 - o.1 (2.7)

When r < R*, deformations will be large and the nonlinear asymptotic field is
present while, for r > P*, the deformation gradient will be small and the linear
elastic asymptotic field will prevail.

Under the conditions of small scale nonlinearity, the energy release rate is equiv-
alent to the J-integral, or

i = (2.8)
E

where E is the Young's modulus. Within the methodology of linear elastic fracture
mechanics, it is assumed that crack extension occurs at critical values of KI and
JI, termed K1 c, the fracture toughness, and JlC.

Small s ile nonlinearity is analogous to small scale yielding [32,17] in elastic-plastic
materials in that the region of nonlinearity around the crack tip is sufficiently
small compared to the crack length and the overall geometry of the body. Where
the linear elastic asymptotic field can be found, the conditions of small geometry
change and linear elasticity are also met. However, in small scale yielding, it is
possible for the K-dominant region to surround another region vhich is closer to
the crack tip where the material behavior is plastic, violating the assumption of
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linear elasticity, and yet still have small geometry changes while, much closer to
the crack tip, both large geometry changes and plasticity will be present. In small
scale nonlinearity, though, both assumptions, linear elasticity and small geometry
changes are violated at approximately the same radius, R*.

One of the load amplitude constants, a, in the nonlinear asymptotic solution can
be found for a centrally located crack in an infinite plate, Figure 2.3, in terms of
the applied stress, o. Under small scale nonlinearity, the energy release rate, equa-
tion (2.8), is equivalent to the J-integral, equation (1.2), which is evaluated from
the nonlinear asymptotic field in equation (2.6). The details of this calculation
are shown in Appendix-B, and

a-V/if. (2.9)

The magnitude of a will increase with the applied stress, o, but is also a function
of the shear modulus and the crack length.

2.5 Problem Description

Consider a thick infinite plate of incompressible material containing a through-
thickness crack under Mode I loading. In this computational investigation, a
finite element analysis of the crack tip region, modelled as a circular plate shown
in Figure 2.6, was performed. Consistent with small scale nonlinearity, the linear
elastic asymptotic solution, was applied along the outer radius, L, of the circular
plate. Two forms of the Rivlin constitutive law, the first and third order invariants
were used to predict material behavior.

Before conducting the nonlinear finite element analysis, the numerical model was
tested by verifying the accuracy of the linear elastic asymptotic field close to
the crack tip at sufficiently small loads and by determining the geometric size
scale which would satisfy St. Venant's principle, i.e., the crack tip stress field is
independent of the type of applied kinematic constraint, consistent nodal point
forces or displacements.

2.6 Computational Procedures

The analysis was performed using the finite element code, ABAQUS [33] in which
selected numerical procedures were suitable for both nonlinear materials and ge-
ometry. A plane strain quadratic element designed specifically for incompressible
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material behavior was chosen where the pressure field, associated with the con-
straint of incompressibility, is independently interpolated and coupled to the dis-
placement solution as a Lagrange multiplier. The element is considered a mixed
formulation element because the equilibrium equations and compatibility con-
ditions are numerically solved from both displacement and stress variables. The
value of the J-integral was computed using the domain integral method [34], which
is equivalent to virtual crack extension [35] in two-dimensional probleirii.

2.7 Constitutive Models

Rubber and elastomers are classified as hyperelastic or nonlinear elastic materials,
capable of elongations up to 800% prior to failure. Due to the large deformations
found in these materials, constitutive laws from linear elasticity or linear vis-
coelasticity, which are based on equilibrium and time dependent properties under
infinitesimal deformations, cannot be used to predict material response under
large loads.

Many constitutive laws for rubber materials are based on a molecular theory
[36,11] where elastomers are modelled as a network of freely joined molecular
chains which are allowed to pass through each other without hindrance. These
chains deform under load and the resulting stress is related to the energy change
of the network. Different constitutive theories based on this assumption include
Gaussian, phenomenological, viscoelastic and kinetic theories. The Gaussian
model and one specific phenomenological model, the Rivlin law, will discussed
in greater detail below.

Both the Gaussian and the Rivlin laws model the behavior of an ideal elastomer
material in which purely elastic deformations are mechanical and completely re-
versible under isothermal conditions. The material is assumed to be initially
isotropic, homogeneous, and incompressible. The significance of the word initial
stems from nonhomogenities, such as the localized crystallization of natural rub-
ber, which can be found under small loads and disappear upon load removal. Of
course, when the load is significantly large, crystallized regions exhibit hysteresis
and material behavior is now irreversible. In addition to hysteresis, internal fric-
tion between molecules and permanent set are also departures from the ideal finite
elasticity in which these theories are based, although static loading conditions can
minimize the effect of internal friction.
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Figure : A Mode . crack.
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Figure 2.2: Orientation of the crack in the undeformed coordinate system.
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Figure 2.3: A center crack in an infinite plate.
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Figure 2.4: Orientation of the crack in the deformed configuration.
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Figure 2.5: Small scale nonlinearity.
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Figure 2.6: A through thickness crack in an infinite plate.
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Strain energy functions, W. representing these constitutive laws are developed in
terms of the strain invariants, I,,

11= A,+A + A ,
IL 3

12 = ,\A 2 + A2 A + A'A' (2.10)
13 --- ) 2 3 1

13 = 2

which are defined by the stretch ratios, A,, the positive square roots of the eigen-
values of the right stretching tensor. The third strain invariant equals one as a
consequence of incompressibility.

The Gaussian constitutive law assumes a statistical distribution of the length of
the molecular chains in their undeformed state and that the undeformed length
is much less than the fully extended length of the molecular chain in its deformed
state. The strain energy function characterizing this material response is the
Neo-Hookean law

W=C(I1 -3) , (2.11)

where the single material constant, C, is proportional to p and can be defined in
terms of the molecular weight, M, the number of subchains between crosslinks,
N, the molecular weight of the subchains, .v,, and the density of the elastomer,
pP, by

C =. = NkTt = ppRT,(1 (2.12)
2 _ Me

Here, k denotes the Boltzmann constant, Tt is the absolute temperature, and R
represents the universal gas constant. This theory applies when the strains are not
too large, i.e., strains do not approach the limiting deformability of the molecular
network. When a significant number of chains becomes fully extended, this theory
is no longer valid, as shown in Figure 2.7 [36]. At moderate deformations, the
actual nominal stresses are less than predicted stresses while at large deformations,
the actual nominal stresses are greater than predicted values, a consequence of
material behavior deviating from the ideal theory.

In the Rivlin constitutive model [37], the strain energy function, W, is expressed
as a function of the strain invariants in the form of a doubly infinite series, or a
Taylor expansion around the undeformed state of the material, as

W = , C,,(Ij - 3)'(12 - 3)' , (2.13)
i=0 j=O

where the material constants are Cj. For the strain energy to vanish when the

material is undeformed, the term Coo must equal zero. Equation (2.13) is the most
general form of a phenomenological constitutive equation for the equilibrium of an



2. 7 CONSTITUTIVE MODELS 48

ideal hyperelastic material. For sufficiently small deformations, the terms in this
expansion, (I - 3) and (12 - 3), are small and of the same order in magnitude, and
consequently, the linear terms in IV, regardless of the additional higher order terms
included in V, should approximate material behavior. When a linear relationship
exists between the shearing force and the amount of simple shear, -f, Rivlin [38]
found that W could be valid even at large deformations if the assumptions of an
ideal incompressible material are met in the undeformed state.

The linear form of equation (2.13) is referred to as the Mooney-Rivlin material
law, stated as

W = C1 o(I - 3) + C01(12 - 3) . (2.14)

The material constant C0 , is related to the number of permanent chemical crosslinks
and the strength of temporary intermolecular interactions caused by crystallites or
molecular entanglements but is independent of swelling while the second material
constant, C01, decreases with swelling and repeated extension, representing the
magnitude of transient intermolecular interactions. The flexibility of the molecu-
lar chains and their ability to spontaneously crystallize increases with the ratio of
CoI/C 1 o [11]. Finally, at infinitesimal deformations, these material constants are
related to p by

t= 2(Cio + Col) . (2.15)

In simple extension, the nominal stress, a, is expressed as

(A - 11 W (2.16)

for a given stretch ratio, A, or

\(2.17)

using the Mooney-Rivlin form of the strain energy. When equation (2.17) is
rewritten as 1

C' 0C+±-C o, , (2.18)
(A - 1/A2 ) A

a linear relationship between the left hand side and 1/A is found where the
slope of the straight line is Col and the sum of the two material constants,
(CI0 + COI), is the y-intercept at A = 1. This graph is referred to as a Mooney
plot, shown in Figure 2.8 for a vulcanized natural rubber. At moderate defor-
mations, 0.45 > 1/A > 0.9, a linear relationship is found and deviations outside
this region are attributed to experimental error (1/A > 0.9) and crystallization
(1/A < 0.45). Rivlin [38] notes that material constants obtained using the linear
portion of the Mooney plot do not accurately predict material behavior at large
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deformations, A > 2.2, or under other types of deformations such as pure shear,
compression, and simple torsion. Even though the Mooney-Rivlin constitutive
model does not provide a self-consistent model for the behavior of rubber under
general deformations, it is still commonly used because many tensile engineering
applications for rubber are confined to A < 2.2.

To obtain improved values of Col and CI0 , more than one type of deformation
behavior, i.e., simple extension and compression, are used and a typical Mooney
plot showing both types of deformations is provided in Figure 2.9.

James, Green, and Simpson [39] suggested that the phenomenological expression
of the strain energy in equatior (2.13) should be simply treated as a form of a
regression analysis where the material constants become mathematical constants
without physical meaning. From a biaxial extension experiment, which models
general deformation behavior, suitable constants can be obtained to predict ma-
terial behavior in a regression equation containing sufficient terms. The success of
the regression analysis is then evaluated by the degree to which other forms of de-
formation behavior such as simple extension can be predicted.Using this approach
for a natural rubber, James, Green and Simpson [39] showed that this approach
not only models simple deformation behaviors but also more complex engineering
problems such as the inflation of rubber membranes and tubes.

In this compu*ational investigation, a crack analysis will be performed under plane
strain conditions, where 1 and 12 are equal, as shown in Appendix A. Two ma-
terial laws were used to model the Mode I nonlinear asymptotic solution. The
Mooney-Rivlin law, (n = 1) in equation (2.13) was chosen because the incom-
pressible nonlinear asymptotic solution [5,6] is based on this constitutive law. In
plane strain, this law is identical to the Neo-Hookean model, or

W=(C1 0 +C 0 1 )(J,-3) (2.19)

where the material constants,

C1o Co,
- =0.45 and -=0.1 , (2.20)
/ClO

represented typical experimental values.

To determine the effect of higher order terms, which would more accurately model
material behavior at high extensions, on the nonlinear asymptotic solution, the
third order invariant (n = 3) of the Rivlin law, equation (2.13),

W = (C 10 +C 0 l)(1 1 -3)

+(C 1 1 + C20 + C02 )(11 - 3)2 (2.21)

+(C 21 + C12 + C30 + C0 3) (11 - 3)2
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was selected given the material constants provided by James, Green, and Simpson
3 9) as

C1o/ji = 0.45 Cm/Clo = 0.10

Ci/Cio = -8.4x10 - 3  ; C2o/C10 = -5.7x10 - 3

C02/CO = 5.0x10 - 4  ; C21/Co = 3.9x10- 4  (222)

C121C10 = -6.9x10 -5  C 30 /CIo = 3.4x10- 4

C031CIO = 3.4x10 - 6

The third order invariant includes all linear, second order and third order terms.
The second order invariant (n = 2) was not chosen because it did not accurately
predict tensile stresses at large strains.

Nominal stress strain curves, normalized by Mi, are shown in Figure 2.10 and
demonstrate that, at small to moderate deformations, A < 4.0, the two constitu-
tive models show similar stresses but at larger deformations, the Mooney-Rivlin
law (n = 1) underestimates experimentally determined nominal stresses while
the higher order constitutive law (n = 3) more accurately predicts experimental
behavior.

The constitutive law, equation (2.13), was based on the assumption that, at suffi-
ciently small deformations, linear behavior is observed in simple shear where the
deformation behavior can be expressed as

1
A1 =A , A2 = 1 , A3 =" (2.23)

The amount of simple shear, y, is the F1 2 term in the deformation gradient or
1

-y A - .(2.24)

where

F (2.25)

For an incompressible material, it can be easily shown that [1 equals 12, denoted
in terms of A by

1A =1 2 =A 2 +-+l (2.26)
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The strain energy functions for (n 1), equation (2.4), and (n = 3), equa-
tion (2.21), become

TV = (n = 1);

W = 2(CI0 +C)' 2  (2.27)
+4(C 11 + C20 + C02 )y4  (n =3),
+6 (C 21 + C12 + C30 + C03) Y6

while the shear stress, o1. is expressed as

a'Y =n"-/1);

o - 2(C 1 0 +C 0 1 ) ' (2.28)
+4(C 1 + C2 0 + C02 )/ 3  (n = 3),
+6 (C 21 + C12 + C30 + C03 ) __Y5

Equation (2.28) shows that, for (n = 1) a linear rolationship between the shear
stress and -y is found at all deformations but for (n = 3), a linear relationship will
be found only at small deformations when the linear terms dominate the solution.
As y increases, the higher order terms will become increasingly more important
and this is shown graphically in Figure 2.11. When -y < 3, the differences in
the shear stress between the two constitutive models are small, but at -y > 3.
the graph for (n = 3) is no longer linear and large differences between the shear
stresses are found between these two models. For both constitutive models, u can
be determined as twice the sum of the material constants or

(2.29)

In modelling material behavior, there exists a region surrounding the crack tip
where non-ideal hyperelastic material behavior is present due to crystallization
and viscoelasticity, and in this region, the nonlinear asymptotic solution [5,6] pre-
dicts that A and W become infinite as r -- 0, which is not physically realistic.
Therefore, there is a limit to the region where the asymptotic solution and strain
energy are valid as the radius from the crack tip vanishes and continuum mechan-
ics no longer applies. Alternative constitutive models based on viscoelastic and
molecular theory, such as Halpin and Bueche [10], could prove extremely useful
in predicting material behavior when non-ideal hyperelastic material behavior is
present, although these models were not explored in this investigation.
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Figure 2.7 Comparison of experimental and theoretical predict 1:)rs from Gaussian
theory. From: Treloar, L.R. The physics of rubber elasticity. Clarendon Press,
Oxford, (1958), p. 87.
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Figure 2.8: Mooney plot using simple extension data only. From: Rivlin, R.S.
and Saunders, D.W Large deformations of isotropic materials. VII. Experiments
on the deformations of rubber. Phil. Trans. Roy. Soc.A. 865 (243) (1951), p.
269.
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Figure 2.9: Mooney plot from simple extension and compression. From: Rivin,
R.S. and Saunders, D W. Large deformations of isotropic materials. VII. Experi-
ments on the deformations of rubber. Phil. Trans. Roy. Soc.A. 865 (243) (1951),
p. 274.
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2.8 Computational Model

Only the top half of the crack tip region, Figure 2.12, is required for finite element
discretization since the problem has reflective symmetry about the x-axis. The
crack length, L, equals the radius of the semi-circle. The finite element mesh
contains two regions. A coarse mesh surrounds the crack tip. Enclosing this
coarse region is a refined mesh where more accurate crack tip field quantities
may be found. Both the coarse and the refined regions contain rings of eight
noded isoparametric quadrilateral elements. Within a ring, all elements have
equal angular extent and the same radial length.

The coarse region in Figure 2.13 contains four rings and extends to 10-L. The
first ring is constructed of three elements of length 10-'L. In each subsequent ring,
the number of elements is doubled so that the fourth ring contains twenty-four
elements. Element lengths in the remaining three rings of the coarse mesh were
biased, such that, along a radius extending from the crack tip, the elements are
equally spaced on a logarithmic scale from 10- 9 L to 10 5L. Along each ring, nodal
displacements are constrained to enforce compatibility. The surrounding refined
mesh is shown in Figure 2.14. All thirty-six rings in this region are constructed
of twenty-four elements. Again, the element length increases with radial distance
from the crack tip with reference to a logarithmic size scale. Six rings of elements,
equally spaced on a logarithmic scale, are contained within a decade unit of crack
length, 10-"'+'L to 10- 'L, where m ranges from 5 to 0. The refined mesh extends
from 10- 6 L to L. The entire mesh contains 2850 nodes, with two kinematic
degrees of freedom at each node and an additional pressure degree of freedom at
the corner nodes. Constructed from 909 elements, the coarse mesh is composed
of 45 elements while the refined mesh contains the remaining 864 elements.

One of the assumptions of small scale nonlinearity is that, for sufficiently small
loads, linear elasticity would be approximated throughout the crack tip region and
that the nonlinear elastic asymptotic crack tip field would evolve when the load
was increased. In addition, because the linear elastic asymptotic field is applied
as an applied displacement field, it became necessary to determine a value of V
which approximates the behavior of a Mooney-Rivlin material under infinitesimal
loads.

First, v, was determined by applying a Mode I linear elastic field as consistent nodal
point forces to the outer boundary and comparing the computational results at the
crack tip for a linear elastic material to those obtained from an equivalent Mooney-
Rivlin material, i.e., equal shear moduli at infinitesimal deformations, under iden-
tical loading where the value of the stress intensity factor, K[ appied = 80 kPa-m,
was small enough so that the maximum engineering strain was 0.1. The material
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properties of the linear elastic material were modified by varying v and the finite
element analysis was repeated. When v = 0.4999, the crack tip strss fields for
the linear elastic material and the NIooney-Rivlin material agree within two or
more digits of accuracy, but when v is decreased, the two stress fields are only of
the same order of magnitude.

The adequacy of the mesh was then verified by comparing the finite element results
to the linear elastic asymptotic field. On the basis of equation (2.4), stresses
were normalized by a characteristic length, Kjappjid/V52'7r, at different radial
distances and then compared to the theoretical solution. Shown in Figure 2.15
as a function of angle, 9, around the crack tip, the greatest differences between
the computational stresses and linear elastic theory are found along the radius
closest to the crack tip for o'l and o'22. Along an arc of radius of 10- 6 L, the
numerical solution agrees with theoretical predictions. Closer to the crack tip,
small differences between theory and the numerical solution are present and are
attributed to hydrostatic pressure. The numerical values of shear stress, 0'12 ,
agree with linear elastic theory at all radii. Calculated values of the J-integral
were within one percent of the applied value of the J-integral, equation (2.8).

Even though the mesh is coarse at the crack tip, accurate stresses were obtained
because this mesh was designed to equalize the error in the element energies sur-
rounding the crack tip. A mesh pattern, considered optimal in that the error in the
element energies is equally distributed, was designed by Fried and Yang [40] un-
der the following assumptions: (1) the form of the strain energy is quadratic, i.e.,
under small displacement theory and linear elasticity; (2) the displacement field
will be interpolated with polynomial functions, as in the finite element method;
and (3) the displacement field is of the order r", where 0 < 7 < 1. This approach
has proven useful in constructing near tip optimal meshes for linear elastic crack
tip problems [411. In this computational analysis, only u 2 -, r" where 0 < 77 < 1,
based on equation (2.6), and consequently the strain energy is only approximately
quadratic. However, the Fried and Yang approach is likely to be better than a
uniform mesh pattern and, in the linear elastic region, will equally distribute the
error in the element strain energies. To determine the actual error distribution
in the nonlinear region, an error analysis based on the asymptotic field and the
energy expansion is necessary, but is beyond the scope of this investigation. Fi-
nally, when the coarse mesh around the crack tip was further refined, the crack
tip elements everted when the maximum strain exceeded 0.2.

A coarse mesh containing twenty-two rings of elements was constructed to identify
the appropriate geometry for this problem. The mesh design was similar to the
refined mesh in that the elements within a ring were of equal angular extent and
radial length and that the element lengths along a radius emanating from the
crack tip were biased with reference to the logarithmic scale described previously.



2.8 COMPUTATIONAL MODEL 61

In two separate analyses. the effect of the type of boundary conditions (point
forces versus displacements) on the small scale nonlinearity solution was deter-
mined. The Mode I linear elastic field was applied as consistent nodal point
forces. calclated by integrating the Mode I stress field, equation (2.4), along the
surface r = L. The value of K was gradually increased until R* -- 10- 4 L. In the
same manner. the Mode I linear elastic displacement field (v = 0.4999), given as

K 1  9 2( /
U1 = L 2- -,c0s2 1- 2v+sin 2  +o r /

(2.30)

U2 = L-,2v/2r sin 2(1 - v) -cos 2  +o 1/2)

was nodally enforced along the surface r = L. Due to convergence difficulties.
the linear elastic field for v = 0.4999 could not be directly applied. The finite
element solutioa was obtained in a two step process, refer to Figure 2.16. First,
the displacement field for v = 0.49 was applied along the surface r = L, and the
magnitude of K, was increased to the desired value, K*. Next, the displacement
field for v = 0.4999 was applied to the intermediate results so that the displace-
ment boundary conditions changed from u(K', v = 0.49) to u(K*, v = 0.4999).
Again, the value of KI was increased until R* - 10- 4 L. Here, the value of v
is treated as a parameter in the displacement boundary conditions rather than a
variable material property. The two step process will not affect the computational
results because the elastomer material is nonlinear elastic and consequently, the
load/material path is irrelevant.

The effect of the boundary condition type is shown in Figures 2.17 and 2.18.
As the radius of the transition region, the magnitude of the applied value of
the stress intensity factor, and the resulting value of the J-integral increase, the
solution accuracy, measured by the numerically calculated value of the J-integral,
decreases. The value of the numerically computed J-integral increases with the
magnitude of the stress intensity factor when displacement boundary conditions
are used in contrast to the computational results when consistent nodal point
forces are applied. Regardless of the type of the applied boundary condition. the
numerical value of the J-integral is path independent at radii exceeding 10- 7 L,
shown in Figure 2.19. Based on St. Venant's Principle and under the assumptions
of small scale nonlinearity, the mesh geometry must be sufficiently large to ensure
that the leading term of the applied linear asymptotic field, equation (2.4), is
dominant and that the higher order terms do not contribute significantly to the
crack tip stress field. These conditions will be satisfied if R* is extended only
to 10'L, assuring that the finite element solution is independent of the type of
boundary condition that is applied and that the numerical value of the J-integral
will be within five percent of the applied value. Stress fields from both types of
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boundary conditions were compared when the radius of the transition region was
10-5L. The stresses were found to be independent of the boundary conditions as
the stress field obtained from the displacement boundary conditions agreed with
those obtained from the traction boundary conditions within one percent.

The finite element results for the nonlinear analysis were made using the refined
mesh described previously. Loading were applied as consistent nodal point forces.
The value of the stress intensity factor, KI, was increased until R* = 10-'L.
Computed values of the J-integral at radii exceeding 10- 6 L, where the refined
mesh begins, were within five percent of the applied value for both constitutive
models. For the Mooney-Rivhn material (n = 1), the analysis was continued until
the elements at the crack tip began everting. However, for the third order invariant
material (n = 3), numerical difficulties were encountered upon load application.
To circumvent the problem of the crack tip elements everting, three nodes along
the first ring of elements at 9 = 0, r/2, and 7r were constrained to move in the
x-direction only, while the remaining nodes along this ring are constrained only to
enforce compatibility, as shown in Figure 2.20. These kinematic constraints allow
material flow around this small nucleus of material of radius 10- 9 L in the coarse
mesh region and have a negligible effect on stresses in the refined mesh region,
which begins at r = 10- 6 L and where the nonlinear asymptotic solution will be
found.

2.9 Results

A computational investigation of Mode I plane strain fracture of an elastomer ma-
terial was performed under the conditions of small scale nonlinearity Two finite
element analyses were performed, one using the Mooney-Rivlin material, equa-
tion (2.14), referred to here as (n = 1), while the second analysis was based on
the third order invariant of the Rivlin constitutive law, equation (2.21), which will
be denoted as (n = 3).

Prior to examining the mechanical crack tip fields, the adequacy of the geometric
scale and the path independence of the J-integral will be shown as the magnitude
of R* increases. The effect of the additional kinematic constraint on A when
(n = 3) will be shown. The region of dominance of the nonlinear elastic crack tip
field, as determined by the stresses and displacements, will be investigated and
crack tip field quantities are compared to the nonlinear asymptotic solution of
Knowles and Sternberg [5]. Stresses and deformation fields are normalized by the
characteristic length represented by (Japi,ed/ki), where d,,, is referenced to the
the applied value of K along the surface r = L through equation (2.8).
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Boundary Conditions

Mode I Linear
Elastic Solution

Traction free C)C

Crack tip

Outer Radius, L

Radius of Nonlinear Region, R* = 10- 5 L

Figure 2.12: Model of crack tip with boundary conditions.
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(a) Rings 1 and 2.

Figure 2.13: Coarse crack tip region.
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(b) Rings 3 and 4.

Figure 2.13: Coarse crack tip region.
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Figure 2.14: Refined mesh surrounding coar-se mesh and crack tip.
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Figure 2.16: Parametric two step process used to obtain finite element solution
when applied displacements are used.
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Crack Tip

Figure 2.20: Additional finite element kinematic constraints imposed for third
order invariant of material law (n = 3).
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The nature of the nonlinearities, material and kinematic, will be described through
contours of the deformed crack tip. Finally, the hydrostatic pressure field in front
of the crack will be examined and Ball's failure criteria [22] will be applied to
predict the location of cavitation in front of the crack: Using the failure model of
Rice and Johnson 130], this prediction will be related to the-microstructure of the
material.

2.9.1 Geometric Scale

This finite element mesh was designed to ensure that the crack tip stress field is
independent of the type of boundary condition (point forces versus displacements)
that is applied. To verify that the appropriate geometric scale is maintained, the
accuracy of the computed J-integral is shown as a function of R* and Jpplid, that
magnitude applied along r = L, in Figures 2.21 and 2.22. Because the geometric
scale was maintained for both material laws. only the results for (n = 3) are
presented. The geometric scale for this mesh was appropriate as the numerical
values of the J-integral are within five percent of applied values at all load levels.

The magnitude of R* increased linearly with Jplid as found in Figure 2.23 (n =

1) and 2.24, (n = 3) or

JAppid (* r 2ppd
R* x . or j , (2.31)

similar to the size of the plastic zone in small scale yielding. In these numerical
analyses, R* was extended to 1.2 x 10- 4L until the crack tip elements everted
for (n = 1), while R* was allowed to reach 6.6 x 10-4L for (n = 3) where the
analysis was stopped because the limits of the geometric scale, defined by a five
percent error in the numerical value of the J-integral. were attained. The region
of dominance of the nonlinear elastic field is found throughout the first decade
of elements closest to the crack tip in the refined mesh region for (n = 1) but
extends well into the second decade for i n = 3).

2.9.2 Path Independence of the J-integral

The J-integral was within one percent of the mean value along all contours from
r = 10-6L to 3.0 x 10- 3 L, Figure 2.25, the largest radius at which the J-integral
was evaluated, indicating the J-integral is path independent throughout the refined
mesh region. Although the accuracy of the J-integral decreased with increasing
load as shown in Figure 2.21, the maximum error in the computed J-integral was
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two percent for (n = 1) but increased to five percent for (n = 3). In th2 analysis
of the h,,igher order constitutive model, the value of the J-integral, -Iuated along
the crack front is small due to the kinematic constraints applied along the first
rinv of nodes, however, at contours ,way from the crack front. the magnitude
approximates applied values.

2.9.3 Determination of Load Amplitude Parameters

In the Knowles and Sternberg solution [5], equation (2.6), there are three load
amplitude parameters, a, b, and d. The load parameters. a and b, are associated
with leading order terms in both the stress and deformation fields. ThL magnitude
of a in small scale nonlinearity can be determined by direct evaluation of the J-
integral, shown in Appendix-B. so that the remaining load parameters must be
found from the numerical analysis. As r - 0. the nonlinear asymptotic solution
should dominate the computational results and the load oarameter, b can be
evaluated. To solve for b, the yj deformation field was considered. At 6 = 180,
the y' deformation field, equation (2.6), becomes

Yi " br (2.32)

However, for both mat( rial laws, b could not be found accurately because, as r
vanishes, the value of b does not converge to an a. ymptotic limit although it is
noted that

b,-, o(1) . (2.33)

for both material laws. Similar results are found when an evaluation of b is
attempted using 7., and r 12, equation (2.6), at 9 = 90, where

(2.341

u ab

The'value of the amplitude constant d. associated with higher order terms in the
9. component of the deformation field, also could not be obtained.

Although the load amplitude constant b is associated with leading order terms
in the nonlinear stress field, these terms are not the dominant stresses as "22 in

equation (2.6) >> 711, 'r2 and Y2 > Yi ws r -- 0, and, in finite element analyses, it

is the dominant terms that can be found with the greatest accuracy.
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In Appendix-A, additional higher order terms, derived by Stephenson [6), are
included in the nonlinear crack tip field. Because the value of the load amplitude
constants b and d could not be determined, it was not attempted to evaluate the
load amplitude constants associated with these additional terms.

2.9.4 Crack Tip Contours

As provided by Figure 2.26 and 2.27, the deformed crack surface is similaF for
both constitutive models where the radius of curvature close to the crack tip is
0. 3 16 (J 6pid/j) for (n = 1) and increases slightly to 0.319(J&pjd/g) for (n = 3),
approximating that of the linear elastic solution (v = 0.5),0. 3 1,(Jp*,,d/p). The
crack tip opening displacement, measured at (Od = 135) from the crack tip. was
1.3 (Jppled/p) for both (n = 1) and (n = 3).

2.9.5 A Along the Crack Front

As a consequence of incompressibility,

13 = A1A2A3 = 1 (2.35)

and plane strain,
A\3 (2.36)

the principal stretch ratios can be denoted as (A, 1/A, 1). The value of lambda.
Figure 2.28 and 2.29, is shown in front of the crack tip (0 = 0) for both constitutive
models and is influenced by the additional kinematic constraint for (n = 3). From
the nonlinear asymptotic solution. A -- x as r - 0. The presence of a square
root singularity, i.e., \ x r - 1/2. consistent with the nonlinear asymptotic solution
is detected for (n = 1). However for (n = 3). the kinematic constraint prevents
,\ from increasing as rapidly by removing the square root singularity at the crack
tip and replacing it with a weaker singularity, A x r - 1/5 as r -- 0. Close to the
crack tip, A increases slowly to a value of 10 at x, = 5.0 x 10-gL, the first ring of
unconstrained nodes.

2.9.6 Crack Tip Stress Fields

Normalized contours of stress, found at the centroid of the element, versus unde-
formed radial distance from the crack tip are shown in Figure 2.30 through 2.35.
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Far from the crack tip, the stress field agrees with the applied linear elastic solu-
tion, but as the radius approaches the crack tip, a gradual change from the linear
elastic solution to the nonlinear elastic solution occurs and close to the crack tip.
the nonlinear solution is found. In terms of the characteristic length. the outer
boundary of the nonlinear and transition region is located at a radius of 10- 4 L in
the undeformed configuration. well within the refined mesh.

The region of dominance of the nonlinear stresses is approximately the same for
both material laws. The contours of 722 /pu, Figure 2.30 and 2.31, clearly shows
the transition from the linear to the nonlinear asymptotic solutions. Far from
the crack tip, a square root singularity indicative of the linear elastic field is
present, however, as r -- 0, the singularity of order r - 1, associated with r 22 in
the norlinear asymptotic field in equation (2.6), is found. Although results" are
presented only for 0 = 71.25, this behavior is representative of stresses evaiuated
at other angles. Results for -r, Figure 2.32 and 2.33, and 711, Figure 2.34 and 2.35.
again demonstrate the presence of the linear elastic asymptotic solution far from
the crack tip and the gradual change to the nonlinear elastic solution. The graphs
of 712 clearly show the transition to the nonlinear solution even though the order
of the singularity is the same for both the linear and the nonlinear solutions and
only the magnitude of the load amplitude constant differs. Close to the crack tip.
rT12 reverts back to the linear elastic solution for (n = 3), a possible consequence
of the kinematic constraint which will be discussed below. The computational
results for 71, are the least accurate of the crack tip stresses. The Knowles and
Sternberg solution [5] predicts that ri, is a function only of 0, and that, at a given
angle, the value of r1 should approach a constant in the nonlinear asymptotic
region. The finite element results show that r-1 begins to approach a constant
for (n = 1) but demonstrates some oscillatory behavior between the linear and
nonlinear asymptotic fields for (n = 3) as r - 0. However, r1 < 722, and, as
stated previously, the numerical analysis will calculate r 1 with the least accuracy
because it is the smallest stress component.

The effect of the constitutive model on the stress field was unexpectedly small as
larger stresses around the crack tip were expected for the higher order material
law (n = 3). The higher order constitutive model predicts higher stresses when
A > 4. compared to the Mooney-Rivlin model (n = 1), and, as r vanishes, A should
be much greater than 4. The additional kinematic constraint causes A -- o. more
slowly for (n = 3), reducing the intensity of the stress field in the refined mesh.
Consequently, the stress fields for (n = 1) and (n = 3) at a given radius are closer
than would be predicted.
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2.9.7 Characterization of the Nonlinear Crack Tip Region

From hyperelasticity nonlinearity was previously defined in terms of the defor-
mation gradient, F. If

!F,) - 6,ji > 0.1 2.37)

nonlinear mechanical behavior is assumed. However, two types of nonlinearity
can be found as deformations can be decomposed into a stretch and a rotation.

F = RE' 2.3,S

The right stretching tensor U is positive definite and symmetric and its principal
values are denoted by the stretch ratios, ., defining the amount of stretc '
in three mutually perpendicular directions. The tensor R is proper orthogonal
and characterizes the rotation due to an angle, o. Thus, the deformation gra-
dient can be defined in terms of a rigid body rotation, given by the tensor. R.
followed by a stretching denoted by U. Large values of A, represent the nonlin-
ear material component of a deformation field while the kinematic component is
given by the rotation angle, o. Therefore, material and/or kinematic nonlineari-
ties can be present. The sources of the nonlinearities associatec with this small
scale nonlinearity solution were examined from contours of A1 and 0. computed
at the element integration points, made on the deformed configuration. (Y1, Y2) or
(rd,Oj), normalized by the character5tzc length, (Jppae/t-).

Material Nonlinearity

Nonlinear material behavior can be defined as

1A - 1.0 > 0.1 2.39 1

Contours of IA - 1.01 are shown in Figure 2.36 and 2.37. For both constitutive
models the radius of the nonlinear region is smallest in front of the crack tip at a, =
0. This radius increases with the polar angle 01 up to a value of -, 3.5(J:,ppiie/tAf
at Od = ,r/2. As 01 is increased further and the crack surface is approached.
the radius cf the nonlinear region decreases. The -ize of the nonlinear region is
approximately the same for both constitutive laws but the shape is different. The
shape of the nonlinear region is elliptic for the third order 'nvariant material law
but ir more circular for the Mooney-Riviin law.
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Figure 2.36: Contours of material nonlinearity in the deformed configuration for
(n = 1).



2.9 RESULTS 96

8.0-

6.0-

0.08

20- 0 0.1

-4.0 ,0 0.0 2.0 4.0

Figure 2.37: Contours of material nonlinearity in the deformed configuration for
(n = 3).
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Kinematic Nonlinearity

Rotations are considered large, i.e.. representative of nonlinear elastic behavior.
when

> 0.1 , (2.40)

and contours of o are presented in Figure 2.38 and 2.39. Here, the shape of the
kinematic nonlinear region is approximately the same for both material laws but
the size of the nonlinear region is much smaller for n = 1. This nonlinear region
is located above and behind the crack tip and in front of the crack tip, (Gd = 0).
linear kinematic behavior or small rotations are found. Large rotations are present
only above and behind the crack tip.

The nonlinear region around the crack tip can be characterized as follows. Large
stretches and large rotations can be found in the immediate vicinity of the the
crack tip and the size of this region in the normalized deformed configuration
is independent of the constitutive law. It is surrounded by a second nonlinear
region containing small stretches but large rotations, which is larger for (n = 3)
and extends to a radius of 15(Jph.d/P), while the radit. is iO(Japplied/u) when
(n = 1). Outside of this second nonlinear region, small rotations and small values
of A, representing linear elasticity and small geometry changes, are present.

In small scale nonlinearity, it was predicted that the assumptions of linear elas-
ticity and small geometry changes would be violated at approximately the same
radius. R*, but the finite element results show that the region of kinematic non-
linearity extends further throughout the crack tip region when compared to that
of material nonlinearity and that there exists an area of large geometry changes
and linear elastic material behavior. The transition to small geometry changes
and linear elastic material behavior in small scale nonlinearity is in contrast to
small scale yielding, where the the linear elastic crack tip field can surround a
region of small geometry changes and nonlinear material behavior closer to the
crack tip and both kinematic and material nonlinearities are found as r vanishes.
Thus, the transition region in small scale nonlinearity is characterized by large
geometry changes and linear elastic material behavior while that in small scale
yielding is defined by small geometry changes and nonlinear material behavior.

2.9.8 A Local Cavitation Criterion and the Rice-Johnson
Failure Model

A theoretical criterion for cavitation [221 predicts that cavitation will occur when
the triaxial tension ahead of the crack tip reaches a critical value, equation (1.6).
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Figure 2.38: Contours of kinematic nonlinearity in the deformed configuration for
(n = 1).
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Figure 2.39: Contours of kinematic nonlinearity in the deformed configuration for
(n = 3).
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For the Mooney-Rivlin model, this critical value, P,,, equals 2.5p, however, when
a higher order form of the Rivlin constitutive model is applied, the integral in
equatiolu (1.7) diverges. Consequently, Ball's cavitation criterion was applied only
to the finite element analysis of (n = 1).

Cavitation was examined in front of the crack tip (0 = 0) in the undeformed con-
figuration, Figure 2.40. Here, far from the crack tip, the triaxial tension approxi-
mates that of the linear elastic solution while, close to the crack tip, it approaches
that of the nonlinear elastic solution. Pc,, is attained at x, cit/(Jpplied/I) - 10- ',

in the transition region between the linear elastic and the nonlinear elastic asymp-
totic solution. Contours of the triaxial tension in the deformed configuration are
presented in Figure 2.41 for (n = 1) where ?,,t in front of the crack tip is reached
at ylcrit/(Jappied/ ) - 0.025. Although Ball's cavitation criteria could not be
directly applied when (n = 3), contours of the triaxial tension in the deformed
configuration, Figure 2.42, are similar to those of (n = 1) and P,, is found at
approximately the same value of yl/(Japplied/p), indicating that the cavitation
predictions based in the Mooney-Rivlin material law may have some limited va-
lidity when higher order forms of the Rivlin law are considered.

The failure model of Rice and Johnson [30] relates a localized fracture criteria to
a critical microstructural distance, D, in front of the crack tip based on the mean
particle spacing of the inclusions causing failure. In this analysis, the fracture
criterion considered was the cavitation model discussed above while the inclusions
causing localized cavitation of pre-existing microvoids were carbon black particles
ina filled rubber. The assumption that carbon black influences cavitation is based
on experimental evidence that microscopic tears in filled elastomers are associated
with carbon black particles [42].

For a spherical particle, the mean particle spacing is

D = (particle radius) x (volume fraction) - 1 3
, (2.41)

where the radius of aggregates of N330 carbon black particles is 0.25,rm [421 and
the volume fraction of carbon black in filled rubbers varies from 0.3 to 0.5. Here,
D is approximately 0.2,m. The failure model [30] predicts that

xlc7.tt D=~ri N D 2.42)
Jczppied/' .ppied/AI~(.2

given that N represents the number of mean particle spacings and J, ,pjid is the
value of the J-integral at cavitation. The value of Xl,,,t/ (Jappied/) is provided
by the computational analysis as 0.01 and experimental data [16] measured:

J = 0.013MPa-m , (2.43)
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where J is the applied value rcquired for crack propagation in a natural rubber
filled with N330 carbon black and u -, 2MPa. When this data is substituted into
equation (2.42), the value of N becomes 300 mean particle spacings in front of the
crack tip. The value of N is high because J in equation (2.43) is that value required
for crack propagation, and subcritical crack growth, - 0.01]mm [13], has already
occurred. In this analysis, a critical cavitation event is predicted at a distance
equal to the product of N and D, 0.006 mm, and approximates the amount of
subcritical crack growth prior to crack propagation. However, the validity of Ball's
criterion in the presence of material delamination, molecular alignment, and shear
failure in front of the crack tip requires further examination. This local cavitation
criterion may, in a practical sense, correspond to a subsequent initiation event,
rather than the first onset of cavitation.

2.10 Discussion

The finite element results confirm the presence of the nonlinear elastic asymptotic
field [5] at the crack tip although its region of dominance under small scale non-
linearity is small and show that a local cavitation criterion [22] can be applied to
determine the site of cavitation in front of the crack tip.

The-assumptions of small scale nonlinearity were met throughout the finite ele-
ment analysis as determined by the accuracy of the J-integral with respect to the
appropriate geometric scale. The relationship between the value of the J-integral
and the applied stress intensity factor, Kapplied, equation (2.8), establishes the
magnitude of R*/L which represents a limiting condition for small scale nonlin-
earity. At sufficiently small loads, such that the maximum engineering strain is
less than 0.1, the linear elastic crack tip field is accurately obtained throughout
the mesh. However, as the applied load is further increased, the nonlinear elastic
asymptotic field develops at the crack tip with increasing size and magnitude. It
is located in the refined mesh region within the first decade of elements closest to
the crack tip for (n = 1) and extends into the second decade for (n = 3). The
range of dominance of the nonlinear elastic stress field increases linearly with the
applied load. The J-integral was path independent throughout the refined mesh
region and is most accurate at small loads. As the load increases, the error in
the numerically computed J-integral approaches five percent, the maximum error
allowed in this investigation under small scale nonlinearity

The value of R* is small, - 10-4 L, and, at r > R*, the plane strain linear elastic
asymptotic solution is found. At r < R*, the stress components agree with the
nonlinear asymptotic solution, although the magnitude of the load parameters
associated with nondoninant terms could not be determined with accuracy. The
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Figure 2.41: Contours of triaxial tension in the deformed configuration for (n =1).
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stress and deformation fields did not show any oscillatory behavior, except rTi
for (n = 3), but were smooth throughout the finite element mesh at all loads.
Examination of the deformed crack tip surface irl normalized coordinates for both
constitutive laws showed that the radius of curvature at the crack tip. p, agreed
with that from the linear elastic solution, -, 0. 3 2 (JYprjid/A), and that the crack
tip opening displacement was 1.3(Jp,,d/II), indicating the amount of blunting
present.

The highly localized confinement of the nonlinear region and difficulties found
with the determination of load amplitude constants, associated with nondominant
terms in the nonlinear asymptotic field, were also reported by Ravichandran and
Knauss [431 in their finite element analysis of a plane stress Mode I crack in
a Neo-Hookean material. The plane stress nonlinear asymptotic solution [44]
contains stress components with the same order of the singularity as the plane
strain solution. r22 , o(r-), r1 2 , o(r1/2). and rtl, o(1), but the angular functions
differ.When compared to the plane stress solution, the region of dominance in
plane strain is also small. -- 10-'L when the far field loading is equivalent to
,\ = 1.15. In this investigation, A far from the crack tip is approximately 1.01.
The magnitude of R* increases linearly with the applied load under both plane
strain and plane stress conditions.

The effect of the constitutive model on the nonlinear crack tip field is small as the
stress and deformation fields for both (n = 1) and (n = 3) are approximately the
same. These differences are a consequence of the relative magnitude of the mate-
rial constants and the additional finite element kinematic constraints applied to
the (n = 3) analysis. The material constants, Co, and CIO, associated with linear
terms in the Rivlin material law, are at least one order of magnitude greater than
constants associated with the remaining terms, and as a result, the uniaxial stress
strain curve approximates that of the linear form of the Rivlin law when A < 4.
as found in Figure 2.10. In addition, the kinematic constraint removes the square
root singularity at the crack tip and allows A to approach infinity more slowly as
r -. 0, compared to the computational results for (n = 1). At a given distance in

front of the crack tip, A for (n = 3) < A( n = 1). Consequently, the magnitude of
the stress fields located here are closer to each other in magnitude than would ordi-
narily be predicted. Because the square root singularity at the crack tip has been
replaced by a weaker one, the nondominant stresses may not accurately reflect
the nonlinear asymptotic solution, as demonstrated by the oscillatory behavior at
ri- and the return of r12 to the linear elastic solution at small r.

A local cavitation criterion [221 determines that cavitation will occur when the
triaxial tension is 2.5p for a Mooney-Rivlin material. When this criterion is ap-
plied to the mechanical crack tip field, cavitation in front of the crack tip will take
place in the transition region between the nonlinear and the linear asymptotic
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fields for both constitutive models. Cavitation takes place ahead of the crack tip.
at a critical length scale which is related to the nmicrostructure of tl.e material. In
:his investigation, the failure model [301 assumes that a critical cavitation event
occurs when the value of the J-integral is that required for crack propagation and
that carbon black aggregates in filled rubbers, rather than other impurities, has
the strongest influence on the cavitation process. When a length scale defined by
the mean particle spacing of carbon black aggregates is used, it is predicted that
cavitation will occur at 0.006 mm ahead of the crack tip, which is consistent with
experimentally reported values of subcritical crack growth. In this context, the
local cavitation criteria has been applied, not to the first onset of cavitation but
to a subsequent critical event.



Chapter 3

Experimental Investigation

3.1 Experimental Objectives

An experimental study of fracture of an elastomer is presented in this chapter.
Because all ASTM standard and conventional test specimens for elastomers mea-
sure tear strength and tearing energy under plane stress conditions, a new test
specimen was needed to investigate fracture in thick elastomer structures. To per-
form this experiment, a test specimen and testing apparatus were designed and
manufactured to complete the following experimental objectives:

1. physically observe the Mode I fracture process in an elastomer containing a
sharp crack under near plane strain conditions at large deformations,

2. determine the reproducibility of the material behavior,

3. determine the values of failure criteria such as the J-integral, fracture strength
and crack mouth opening displacement (CMOD),

4. observe specimen geometry changes, and

5. determine the effect of crack length on the experimental results.

3.2 Specimen and Grip Design

There is no standard tear test specimen for thtck rubber materials. Conse.uently,
a test specimen and grips were designed to meet the experimental objectives listed

107
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above. The test specimen had to be of sufficient thickness to maintain a plane
strain condition along the crack front, i.e., the strains in the plane of the crack
are zero at the crack front. Although an ideal platte strain condition cannot be
achieved experimentally, limits on specimen thickness in metals can be determined
under which the experimental measurement of J1, is independent of thickness. It
has been established, in metals under small scale yielding conditions, that the
thickness should be fifteen times greater than the radius of the crack tip zone size.
However, for elastomer materials, both the tolerance on the specimen thickness
and the magnitude of the radius of the nonlinear crack tip zone has yet to be
determined. A crack intersecting a lateral free surface is not in perfect plane
strain because a traction free boundary condition is found there, as in Figure 3.1.
With increasing distance from the free surface though, the boundary condition
changes from plane stress to plane strain.

It is assumed here that the fracture resistance in elastomers, as measured by the
J-integral, differs in plane strain compared to plane stress, so a test specimen con-
taining significant plane stress regions must be avoided. In addition, to measure
the value of the J-integral from a single test specimen, the nonlinear crack tip zone
should be confined to the uncracked ligament region ahead of the crack and the
test specimen geometry should have a single characteristic length scale referenced
to the crack length, L. A short thick cylindrical test specimen, containing a deep
crack , should satisfy these design criteria. An axisymmetric geometry provided
another advantage in that a finite element analysis of a cylindrical test specimen
is computationally easier to perform than a full three-dimensional finite element
analysis of a specimen with a different geometry, such as a thick rectangular plate.

In the investigation of the specimen geometry restrictions, the height of the cylin-
der was also given important consideration. A crack would be introduced into the
specimen at mid-height. The distance between the crack and the grips must be
sufficiently large to validate the test accuracy, as Stacer [45,46] had shown that
the distance between the grips and the crack for a constrained trouser test spec-
imen influences the type of tearing (knotty versus smooth) observed. When the
distance between the grips and the crack in a constrained trouser test specimen
was large, knotty tear behavior was observed; when this distance was small, the
knotty tear behavior was eliminated and smooth tearing was found. Higher values
of the tearing energy are reported with knotty tearing, suggesting that small dis-
tances between the grips and the crack affects the failure process. Consequently,
a final design criterion was to stabilize crack growth by using a short gage length..

The final specimen design was a short cylindrical dumbbell, 5.08 cm in height.
Ho,ter, as shown in Figure 3.2. At both ends the diameter, Doute,, is 5.08 cm. In
the middle of the specimen, there is a region where both the diameter, Dine,, and
lengfh, Hnner, equal 2.5 centimeters. The specimen is symmetric about its mid-
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height. and a circumferential crack will be introduced along this line of symmetry.
The diametral change from 5.0 centimeters to 2.5 centimeters was made smoothly
by imposing a radius of curvature of 0.64 cm, thus eliminating sharp edges which
could cause premature failure in areas other than the crack region. This specimen
could be molded or machined from a molded cylinder.

The design specifications for the experimental grips are now presented. The grips
must keep the specimen correctly aligned in the testing machine and must not
introduce regions of high stress concentration along the contact surface between
the specimen and the grips. Surface cracks o- damage which would cause pre-
mature failure to the specimen should be avo 1. The grips must not obstruct
observation of the fracture process and should not interfere with measurement of
the CMOD and the diameter of the specimen during the test. The strength of
the grips must be sufficient to prevent permanent deformation and, consequently
possible failure during a test. Their design should minimize the contribution of
friction to the measured load. Finally, the grips must be reusable and easy to
manufacture.

Two grips were needed, one for each end of the test specimen. As shown in
Figure 3.3, each grip was composed of three pieces. The circular base plate had
a diameter of 7.62 cm and is 0.64 cm thick. The end of the test specimen rested
against this base. To hold the specimen in place, two identical semi-circular plates,
of height 1.9 cm, surrounded each end of the specimen dumbbell shape. When
joined together, these two plates formed a circle, of diameter 7.62 cm, containing a
central circular hole with a 2.54 cm diameter. The inner core of the test specimen
fits in this circular hole and the semi-circular pieces encompass the outer end
of the dumbbell. A radius of curvature of 0.64 cm was introduced where the
diameter changes from 2.5 centimeters to 5.0 centimeters on the inner side of
each semi-circular plate. This follows the smooth transition between diametral
changes in the undeformed test specimen geometry and avoids sharp edges which
could lead to premature failure in the dumbbell test specimen, away from the
crack region. Six fasteners connected the semi-circular plates to the base plate.
The bolt heads protruded from the base plate but did not interfere with optical
measurements taken during the experiment. Because the outer dumbbell portion
of the specimen was encased in the grips, adhesives were unnecessary. Finally, the

grip was attached to the clevis on the testing machine with a pin joint found on
the base plate. The grips were made of medium strength steel to assure a stiff
test apparatus.

To machine the test specimens, an additional set of grips were needed to hold
the molded cylinder in the lathe. These aluminum grips are shown in Figure 3.4.
Each grip held one end of the cylinder in a shallow cup of depth 0.32 cm. The grip
with the 10.2 cm shaft fit into the chuck. The second grip, a solid cylinder with
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the shallow cup cut out at one end and a bore at the opposite end for attachment
to the lathe. was 6.34 cm in diameter and 3.8 cm long. These grips kept the
molded cylinder aligned in the lathe while the specimen was machined. Specimen
preparation will be discussed in a later section.

3.3 Material Description

Test specimens were made from an experimental elastomer material, 15TP-14AX.
Designed for use in U.S. Army tank track pads, the material is a cured triblend
of natural rubber, styrene butadiene (SBR), and a polymerized polybutadiene
(Taktene 220). Its complete composition is given in Table 3.1.

Natural Rubber, SMR-20 35.0
SBR Polymer, Philoprene 1609 35.0
Polybutadiene, Taktene 220 30.0
Zinc Oxide 3.0
Stearic Acid 1.5
ISAF, N220 Black 65.0
Sundex 790 4.0
Sunolite 100 1.5
Agerite Resin D 2.0
Santoflex 13 3.0
Sulfur 1.3
Santocure IPS 3.2
Santogard PVI 0.2

Table 3.1: Formulation for 15TP-14AX (in parts per hundred by weight).

The elastomer, filled with N220 carbon black, was cured for 40 minutes at 1540 C.
This material was obtained from the U.S. Army Belvoir Research, Development
and Engineering Center in the form of molded circular cylinders which were 5.08
cm in both diameter and height. Tensile test sheets, used to make dumbbell tensile

specimens for conducting stress strain tests, were also received.
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Figure 3.1: Plane strain and plane stress regions along crack front.



3.3 MATERIAL DESCRIPTION 112

R 12.7 mm

12.7mm~ Ine

25.4mm Hne

Dinner

12.7 min

Figure 3.2: Test specimen geometry.
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R 12.70 mm

3.18 mm

101.60 mm~l

(a) Shaft piece.

Figure 3.4: Mechanical drawings for grips used in machining.
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R25.15 ,-
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.K I
Counterbore to 6.35mm deep
60 degree angle included

(b) Solid cylindrical piece.

Figure 3.4: Mechanical drawings for grips used in machining.
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3.4 Material Properties

Uniaxial tensile tests were performed at a crosshead speed of 0.05 cm/minute at
room temperature and a dumbbell tension test specimen geometry, as specified
by ASTM D-412. Elongation was measured with an extensometer. The nominal
stress strain curve is shown in Figure 3.5. At a given value of A, each point on
the stress strain curve represents the mean value of three standard ASTM D-412
tensile dumbbell test specimens. The breaking elongation and the nominal tensile
strength are given in Table 3.2. When compared to material properties provided
by Fort Belvoir. given in Table 3.3, all specimens met or exceded the predicted
Abreak of 4.4, and the average value of the nominal tensile strength, 17.9 MPa, was
within ten percent of the predicted value of 19.7 MPa.

Specimen Abreak Tensile Strength (MIPa)
1 4.4 16.1
2 4.5 17.3
3 4.7 20.2

Average 4.5 ± 0.2 17.9 ± 2.1

Table 3.2: Breaking elongation and nominal tensile strength from uniaxial tension
tests.

Original Properties
Tensile Strength, MPa 19.7
300% Modulus, MPa 9.97
Elongation, Abrek 4.40
Hardness, IRHD 73
Bashore Rebound, % 35
Specific Gravity 1.1294
Cure, minutes/°C 40/154

Table 3.3: Material properties of 15TP-14AX.

As in Figure 3.6, one specimen was loaded to an elongation of 250% and then un-
loaded. Upon unloading, the value of the nominal stress was reduced for a given
value of A. This loading-unloading curve demonstrated this material's viscoelas-
tic behavior. Hysteresis, or energy dissipation in a load deformation cycle, was



3.5 SPECIMEN PREPARATION 118

evident. Material characterization studies [471 determined that the bulk modulus
for this elastomer is 362 MPa.

3.5 Specimen Preparation

The test specimens were fabricated from the molded circular cylinders received
from Fort Belvoir, and subsequently, the removal of a large amount of material
from the mid-outer surface was required. The bulk of this material was cut from
the cylinder using a tungsten carbide cutter on a lathe. When mounting the
cylinder in the lathe with the grips in Figure 3.4, care was taken to avoid loading
the cylinder in compression. The final dimensions of the test specimen were
obtained by grinding, which also smoothed the surface and removed small cuts
made by the carbide cutter. A glycol slurry was used periodically throughout
fabrication to minimize heat buildup in the cylinders.

During the manufacturing process, differences in material behavior were observed.
Two of the cylinders cut easily, and thin strips of elastomeric material were eas-
ily removed with the carbide cutte Little or no detectable heat buildup was
present so that the glycol slurry was unnecessary. The remaining cylinders were
more difficult to cut as the carbide cutter removed only shreds of material. Heat-
ing in these cylinders was observed, requiring the use of the glycol slurry. Heat
buildup could be easily monitored because the heat was associated with a char-
acteristic odor. When the odor was detected, machining stopped and the glycol
slurry was applied. After the cylinder was again at room temperature, machin-
ing resumed. As the cylinders were molded from the same batch of elastomeric

material, these differences represent within batch nonhomogenities, possibly from
nonuniform curing conditions [9]. The test specimens were marked to distinguish
those which machined easily, designated M-, from those, labelled 5-, which were

more difficult to cut.

The next step was to notch the test specimens. A sharp circumferential crack
was made at the mid-height of the test specimen using an X-acto knife mounted
on a lathe. The specimen was again placed on the lathe, care being taken not
to load the specimen in compression. Liquid Ajax dish detergent was applied
as a lubricant to facilitate the cutting process. The knife blade was inserted
into the specimen and then the specimen was slowly rotated by hand to make a

circumferential cut.

Small notches can be easily made following this procedure, but deep notches

proved more difficult. A sharp blade can be used to introduce a deep crack but,
as the specimen was rotated, the cutting blade bent. The use of fresh blades and
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liquid detergent did not alleviate this problem. The bending of the the cutting
blade was attributed to friction between the thin steel blade and the elastomer
material. As the specimen was rotated, the elastomer material pulled on the thin
blade and caused it to bend because the liquid detergent was unable to penetrate
the full depth of the crack anid completely remove the friction present. Conse-
quently, deep cracks were made by initiating a small circumferential cut of length
0.13 cm. Then, while the test specimen was slowly rotated, the crack size was
increased to the desired length through increments of 0.13 cm. This procedure
enabled the liquid detergent to penetrate deep into the crack, making the speci-
men eabier to cut. Difficulties in making the notches were observed on both types
of specimens, i.e., those that were easy to machine and those that were not.

Notch lengths, L, ranged from 0.508 to 0.671 cm. These lengths were considered
sufficiently deep to confine the region of nonlinearity from the notch to the un-
cracked ligament length. A crack length of 0.560 cm was introduced into two 5-
specimens to check specimen preparation techniques by determining the accuracy
of L and to verify the reproducibility of the experiment.

Final specimen dimensions, including L, were provided in Table 3.4 The diam-
eter was measured at the mid-height of the specimen. The uniformity of the
inner diameter along Hinne, was determined in specimens M-2, S-3, and U-i by
measuring this diameter at three different locations. Specimen U-1 represented a
prototype on which to test specimen manufacturing and experimental procedures.
Ths specimen was made from a carbon black filled, track pad candidate elastomer
material which had been tested statically in compression, but its precise material
composition and strain history remained unknown. Because this specimen was
fabricated by an experienced machinist, Dinner was more uniform throughout the
length, Hnner, resulting in a lower tolerance on Dinne.. Specimen M-1 contained
a double notch, caused by the bending of the X-acto blade when the notch was
made.

The test specimens were then cleaned with water in an ultrasonic cleaner, remov-
ing any liquid detergent and residual debris present along the crack surface. To
better observe the fracture process, two visual aids, a white penetrant and a white
ink, were applied to several test specimens after verifying on scrap 15TP-14AX
material that these visual aids would not damage the test specimen or cause pre-
mature failure during experimental testing. A white penetrant was applied to the
crack surfaces of specimen S-I to record the location of the crack tip. To better
visualize diametral changes during the experiment, white opaque ink was sprayed
on specimens M-2, S-3, and U-I away from the crack region. After applying mask-
ing tape to the outer surface encompassing the notch, ink was sprayed on these
specimens and allowed to dry.
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3.6 X-Ray Analysis of Notched Specimens

To check for the presence of impurities and voids, an x-ray analysis of the notched
test specimens was performed prior to experimental testing. All specimens con-
tained randomly spaced, spherical inclusions. The diameter of these inclusions
was typically 0.2 mm, although some larger inclusions, of diameter 0.4 mm, were
found. The M- and S- specimens both contained the same average number of
inclusions per unit volume, 0.14mm3 . Cylindrical inclusions of diameter 0.2 cm
and length 1.0 mam, were also found in specimens U-1 and S-1. In specimen M-2,
a crescent shaped inclusion, approximately 1.4 mm long and 0.2 mm across, was
located near the centerline of the specimen. All of these inclusions were more
dense than the elastomer material surrounding them, although their exact com-
position remains unknown. This analysis did not detect any voids. Finally, the
crack width was measured as 0.1 mm in all specimens.

3.7 Experimental Procedure

All specimens were tested in an Instron machine Model TTDL under displacement
control at room temperature. A crosshead speed of 0.05 cm/minute was used
for the double notched specimen, but the crosshead speed was increased to 0.13
cm/minute for the remaining specimens. The load history was monitored both
autographically and digitally. Optical measurements of the CMOD, defined as the
separation distance between the top and bottom crack surfaces along the outer
radius of the specimen, were taken. Geometry changes were documented with a 35
mm camera and a videocamera. Photographs of the specimens were taken at close
range to note details of the fracture process while the videocamera recorded overall
geometry changes. From the videotape of the experiment, diametral changes in
the test specimens were measured along the top grip.

All specimens were loaded to tensile failure. White opaque ink was sprayed on
the deformed crack tip region of Specimen S-2, at a crosshead displacement, A,
of 2.5 cm. The specimen was immediately unloaded at a crosshead speed of 0.13
cm/minute and then reloaded to tensile failure 24 hours later. This procedure
was performed to identify the surface area present at A = 2.5 cm, and then to
determine the effect of unloading and reloading on that area.
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3.8 Results

Failure occurred at large deformations and was characterized by material tearing
in front of the blunted crack tip region and small amounts of slow, stable crack ex-
tension until rupture. The tearing process consisted of two distinct yet related phe-
nomena, delamination and crack extension. Along a radius, R,,c = Dine/2 - L,
as shown in Figure 3.7, localized material failure was identified in two separate re-
gions. Delamination was present between the fabricated crack surfaces, in contrast
to crack extension which was found above and below the crack surface. Both phe-
nomena were associated with failure normal to the crack surface, in the direction
of the applied load.

This fracture process will be discussed qualitatively and quantitatively. Failure
will be examined from the load and CMOD histories and through criteria such
as nominal fracture strength and the values of the CMOD and the J-integral
at failure. First, a detailed description of the tearing process observed in all
specimens is given below.

3.8.1 Description of the Tearing Process

A characteristic failure process was observed at each of three stages of deformation:
(1) upon initial loading of the specimen, (2) at moderate levels of deformation.
where the crosshead displacement, A, was approximately between 1.8 cm and 3.6
cm, and (3) at large deformations, or when A > 3.6 cm. Each of these stages
is illustrated in Figure 3.7 and is referenced to Figure 3.7(a) in the undeformed
configuration. Common features to each of these stages included parabolic, asym-
metric blunting of the fabricated crack (point m), visible separation of the original
crack surfaces into an upper and lower crack surface connected by an inner core
of elastomeric material (point n), and material failure, leading to delamination
(point o) and crack extension (point p). Here, delamination refers to the sepa-
ration of material along the outer surface of the inner core, where the radius is
Rn,. Points (in) through (o) are also labelled on the photographs of the deforming
specimens, Figures 3.8 thru 3.10.

At small values of A, the specimen had sufficiently deformed such that new surface
area, distinguished by its lighter color (due to reflection) in Figure 3.8(a), was
exposed near the crack tip region. It was evident that, at the crack tip, localized
material failure had taken place, i.e., A > Abreak. The original crack surface had
already separated into upper and lower surfaces connected by an inner core of
material. The surface area of the inner core was smooth. Delamination at this
stage, found along the mid-height of the deformed specimen, was initialized by the
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formation of ellipsoidal holes, point (o) in Figure 3.7(b) and Figure 3.8(b), where
the major axis was in the direction of the applied load, followed by material
separation around these holes. Following material separation, the torn surface
resembled rounded saw-toothed segments and retracted back towards the original
crack surface, creating a base or ridge of elastomeric mateiial at Ri. Both the
size of the segments and the height of the ridge were small. As evidenced by
Figure 3.8(c), delamination, point (o), and material retraction, point (q) took
place gradually around the circumference of the inner core. The material did not
retract symmetrically about the mid-height, i.e., material along the top half of
the specimen might still be moving up towards the top of the specimen while
the material at the bottom was already at the ridge. By the end of this stage
of deformation, the newly exposed material surface along the inner core was no
longer smooth, for thin vertical strands of material connected the upper and lower
fabricated crack surface.

In the next stage of deformation, the tearing process was magnified in size, refer
to Figure 3.7(c) and Figure 3.9. The length of the inner core, the size of the
ellipsoidal holes, and the size of the ridge of retracted material gradually increased,
becoming wider and more visible. Two sets of vertical strands along the inner
core were apparent, running from above and below the original crack surface and
joining at the mid-height of the deformed specimen in small jagged saw-toothed
segments. Tearing was initiated from the separation of these segments around
ellipsoidal holes. Where the material had begun to retract, the location, at which
delamination would next occur, point (r) in Figure 3.9(b), could be predicted by
tiny jagged edges on the new surface area. Again this delamination process was
neither simultaneous around the circumference nor was it symmetric about the
mid-height.

By the final stages of deformation, referred to in Figure 3.10 and Figure 3.7(d), the
initially small inner core had grown to almost 2.5 cm long and blunting of the outer
radius, D,,1e/2, point (s) in Figure 3.10(a), could be found. Strands of rubber
extended proportionally longer over the inner core, i.e., more than half of the
inner core's length,increasing the size of the saw-toothed segments. Delamination
initiated from ellipsoidal holes found throughout the surface of the inner core.
However, the holes became smaller and the separated material peeled back, point
(t) in Figure 3.10(b), instead of slowly pulling back, towards a vertical edge of the
specimen.

Crack extension in the direction of the applied load was detected visually and
physically. The proposed model for crack extension is provided in Figure 3.7,
showing schematically that asymmetric crack extension occurred above and below
the original crack surfaces.
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Visual evidence of crack extension in the direction of the applied load, is shown
by point (u) in the sequence of photographs in Figure 3.11. Elastomer material
between the two notches along the inner core was extended with increasing load.
Figure 3.11(a). Along the lower middle and right side of the deformed specimen
in Figure 3.11(b). newly exposed surface material betweeri the original surfaces
of the second lower notch is distinguished by its lighter color and extends out
and away from the inner core. Visual observation of specimen S-2 just prior to
failure also verified this conclusion. The inner core of this specimen, at A = 5.3
cm, separated from the material surrounding it along the bottom edge. The inner
core extended deep into the lower section of the specimen and it could be seen
that only the inner core connected the bottom portion of the specimen to the top.

At failure, the specimen broke into two pieces, a male and a female. The male
piece was not consistently associated with either the top or bottom grip, as shown
in Table 3.5, and was characterized by a plug, located in the center of the spec-
imen, which extended outward and upward. The height of the plug, listed in
Table 3.5 for each specimen, was approximately 0.5 cm and, for a given material
type decreased slightly with increasing crack length. The surface at the top of
the plug was smooth, resembling a glassy fracture surface. Micrographs showing
the saw-toothed segments are provided in Figure 3.12, in which point (c) locates
the fabricated crack surface. In the male piece, Figure 3.12(a), the saw-toothed
segments, point (e) were found at the base of the plug, point (d), and could be
matched to similar segments surrounding the perimeter of the cavity in the fe-
male piece. The female piece, Figure 3.12(b) contained a large czvity, point (f).
in its center. Encompassing the perimeter of this cavity were several layers of
crosshatched material which extended down into the cavity. The layer closest to
the original crack surface, point(g), was thinnest and had the smallest saw-toothed
segments while the layer furthest away from the original crack surface, point (h),
was thickest with the largest saw-toothed segments.

There were usually two layers of saw-toothed segments surrounding the perimeter
of the cavity or plug, but the number of layers for a given specimen varied from
one to four, as tabulated in Table 3.6. Multiple layers were a consequence of
increased specimen elongations and did not occur simultaneously, as evidenced by
the existence of only two layers of crosshatched material found in specimen U-i,
which failed prematurely. The number of torn surface layers was independent of
material type and crack length.

Although successive layers of saw-toothed segments were visibly larger and thicker,
it was difficult to quantify these dimensions because the tips of the saw-toothed
segments curled over the previous layer of torn material, making measurements
inaccurate. The failed specimen pieces were not sectioned at this time to quantify
the observed size changes in the crosshatched layers.
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Specimen Crack Height Inner Inner Diameter Mean Inner Diameter
Length Height at Mid-Height
(cm) (cm) (cm) (cm) (cm)

M-1 0.508 4.989 2.385 2.296
M-2 0.638 5.009 2.423 2.360 2.418 + 0.053

S-1 0.559 5.077 2.524 2.324
S-2 0.5-59 5.039 2.472 2.367
S-3 0.615 5.037 2.520 2.197 2.227 + 0.048

U-1 0.671 4.826 2.168 2.474 2.510 + 0.030

Table 3.4: Initial measurements of test specimens.

Specimen Plug Location Height(cm)
S-I bottom 0.526
S-2 top 0.441
S-3 top 0.422

M-I bottom 0.597
M-2 bottom 0.527

U-i bottom 0.549

Table 3.5: Plug height and location in grips at failure.
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Specimen Number of Layers
M-1 1 -4
M-2 2- 4

S-1 1 -3
5-2 1- 4
S-3 1 -4

U-i 1 -2

Table 3.6: Number of torn surface layers.

Specimen Layer Distance (mm)
M-i 1 0.10

2 1.00

M-2 1 0.06
2 0.20
3 0.40
4 0.80

S-2 1 0.08
1 2 0.50

Table 3.7: Distance between torn surface layers and the fabricated crack tip.

The distance between a torn surface layer and the fabricated crack tip increased
with elongation, as shown in Table 3.7 for specimens M-i, M-2, and S-2. The
thinnest and closest layer was approximately 0.1 mm away from the fabricated
crack tip while the furthest and largest layer was 0.5 to 1.0 mm away from the
tip.

Rupture occurred when crack extension reached a critical value, above or below
the original crack surface. The specimen then broke into two pieces, creating a
male piece from the deformed inner core and a female from the remaining spec-
imen, where ruptured had initiated. Finally, by mating the ruptured specimen
pieces, the fracture process can be referenced to the undeformed configuration
in Figure 3.13. A small layer of torn surface area, representing the saw-toothed
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segments, was located near the fabricated crack tip, the result of delamination
and crack extension during the first stage of tearing. The size of each successive
layer and the distance between layers increased with specimen elongation, each
successive layer undercutting the previous one.

Localized material failure in the load direction had been identified in two separate
regions. Material failure associated with delamination was found between the
fabricated crack surfaces, along the surface of the inner core. The occurrence
of material failure above and below the original crack surface led to increasing
increments of stable crack extension and ultimate rupture of the test specimen.

3.8.2 Quantitative Results

Quantitative results such as the load and CMOD histories were referenced to the
experimentally measured crack length, L,. After rupture, the true crack length
was measured by averaging two values of L, found along a diameter in the female
piece and was found to be within three percent of the intended crack length, shown
in Table 3.8. The deviation between intended and experimental crack length
was attributed to the difficulties in fabricating the notch, discussed previously.
Because the inner and outer diameters of the cylindrical dumbbell specimen were
not precisely concentric due to specimen manufacturing techniques, L, varied by
- 0.02 cm along a diameter. The differences in crack length between specimens
S-I and S-2 are large enough to expect that the load and CMOD histories for
these specimens will not be the same and consequently, the reproducibility of the
results could not be checked.

3.8.3 Nominal Fracture Strength, A, and CMOD at Failure

When examining data at failure, the material type, crack length, and experimental
history associated with each specimen must also be considered, and they are listed
in Table 3.9. To determine the effect of damage on the load and CMOD, specimen
S-i was damaged by applying nail polish to the deformed inner core at A = 3.6 cm,
and subsequently, a basis for distinguishing specimen damage versus experimental
variation in measurements was developed for the remaining specimens. Specimen
S-2 had undergone a load deformation cycle as part of the experiment and, like
specimen U-i, was not a virginspecimen when it was loaded to failure. Finally,
specimen M-I contained a double notch.
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(a) Undeformed configuration.

Figure 3.7: A cross-sectional view of the three stages of tearing.
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Figure 3.7: A cross-sectional view of the three stages of tearing.
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Figure 3.7: A cross-sectional view of the three stages of tearing.
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Figure 3.7: A cross-sectional view of the three stages of tearing.
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(a) Material separation, A\ 0.64 cm.

Figure 3.8: Tearing at low v-alues of ~\in specimen U1-1,
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(b) Ellipsoidal holes at mid-height, A~ 1.44 cmi.

Figure 3.8: Tearing at low values of - ini speciii U-
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(c) Material retraction. = 1.65 cm.

Figure 3.8: Tearing at low values of in specimen U-1.
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(a) Two sets of vertical strands joined at mid-.height in specimen U-I, A = 2. 0 cm.

Figure 3.9: Tearing at moderate values of A.
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(b) Material retraction in specimen S-I, A = 3.0 cm.

Figure 3.9: Tearing at moderate values of A.
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(a) Blunting of the radius, Dine,/2, A = 5.1 cm.

Figure 3.10: Tearing just prior to fracture in specimen S-2.
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(b) Tears towards original crack surface, A = 5.6 cm.

Figure 3.10: Tearing just prior to fracture in specimen S-2.
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(a) Elastomer material between the two notches separating at mid-height.

Figure 3.11: Crack extension in specimen M-1. the double notched specimen.
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Aff

(b) Separated material has retracted downward and crack extension is indicated
by the light material, extending outward. along the lower notch in the mid-right
section of the deformed specimen.

Figure 3.11: Crack extension in specimen Ml-1. the dlouble nlotched1 speci~nn
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(b) Female piece. specimen S-3.

Figure 3.12: Micrographs at 30X of fractured specimens.
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A B

D C

Figure 3.13: Material failure schematically referenced to the undeformed configu-
ration.
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Specimen Crack Length (cm) % Difference
Experimentally Intended

Measured

M-i 0.518 0.508 -2.0
M-2 0.634 0.637 0.5

S-i 0.547 0.560 2.0
S-2 0.576 0.560 -3.0
S-3 0.606 0.615 1.5

U-i 0.658 0.670 2.0

Table 3.8: Experimental and predicted crack length.

Specimen Crack Nominal Nominal CMODf Experimental
Length Fracture Fracture (cm) History
(cm) Stretch Strength

Af (MPa)

M-1 0.518 3.24 9.79 - Double Notch
M-2 0.634 3.14 11.4 3.0

S-i 0.547 3.00 9.10 2.5 Damaged

S-I2 0.576 3.28 9.45 2.8 Load Deformation
Cycle

S-3 0.606 3.27 11.9 2.5

U-1 0.658 1.95 7.79 1.2 Unknown Strain
I_ I I I I History

Table 3.9: Nominal fracture strength, nominal fracture stretch, CMODf.
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All specimens except for specimen U-I were extended for five centimeters at fail-
ure, corresponding to a nominal fracture stretch, Af, of 3.0, where

Af - break + 1 (3.1)
'~Hnner

Results for individual specimens are provided in Table 3.9. Specimen U-i fit
snugly into the grips and this may have precipitated premature failure. Also,
because the strain history of this specimen is not well known, specimen U-I could
have been damaged prior to testing.

Nominal stresses at fracture, a, were defined as

P10 = , (3.2)
AO

given the load at fracture, Pf, and the undeformed cross-sectional area, A0. Here,
A0 is based on the effective radius, Rj, (see Figure 3.7(a)). The results clearly
demonstrated that undamaged virgin specimens containing a single circumferen-
tial crack failed at higher strengths, 11 MPa, when compared to the remaining
specimens. Damage (specimen S-i), material softening ( S-2 and U-i), and the
presence of a double notch (M-1) all reduced fracture strength to 9 MPa. The
prediction that, for a given material type, af would decrease with increasing crack
length could not be verified because experimental histories prevent such compar-
isons. Within batch variations (M- versus S-) of the nominal fracture strength
were not apparent. Values of a t and At were less than the uniaxial tensile strength,
19.7 MPa, and Ab, 4.4, for all specimens.

The value of the CMOD at fracture, CMODf, revealed differences due to material
type. For the S- specimens, CMOD! ranged from 2.5 to 2.8 cm and appeared
to be independent of crack length or damage, while the CMOD t was 3.0 cm for
specimen M-2. CMOD measurements were not taken for specimen M-1 due to
mechanical difficulties.

3.8.4 Load History

Load histories or P - A curves, given in Figures 3.14 and 3.15 (tabulated in
Appendix-C), were consistent with predictions that the load would soften with
increasing crack length for a given material type and also demonstrated that
material type has a strong influence on the load response. At small values of A,
the load was similar for all specimens, but by A = 0.5 cm, differences due to
the crack length and material type were observed. As the specimens continued to
elongate, the load increased linearly with A until the onset of rupture, which could
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be predicted by a drop in load (M-specimens) or by a constant load (S-specimens).
Differences in load histories due to material type (M- versus 5- versus U-) were
readily apparent as specimen U-I exhibited the highest material stiffness even
though this specimen had the longest crack. For both the M- and 5- specimens,
the material response was softer with increasing crack length, however the load
history for specimen M-2 (L = 0.634 cm) was similar to that for specimen S-1
(L = 0.547 cm), reflecting the effect of within batch variations observed during
manufacturing. Damage in specimen 5-i at A = 3.6 cm was indicated by as
a sudden fluctuation in load, followed by a softer material response, and failure
could not be predicted by a change in the slope of the P - A curve. A small load
fluctuation was found in specimen M-2 at A = 4.2 cm, however its source was
unknown.

The load histories were more representative of smooth tearing, in contrast to slip-
stick tear behavior, and its shape reflects that stable crack growth was present
throughout the experiment as shown in Figure 3.16, where an experimentally
obtained P - A. curve is a composite of many load curves valid for stationary
cracks with increasing length, L. Finally, although three stages of tear behavior
were observed, they could not be distinguished on the experimental load histories
by a change in slope. At both transitions regions between stages of tearing,
A = 1.8 cm and A = 3.6 cm, the P - A curves remain linear.

3.8.5 CMOD Histories

CMOD histories, provided in Figure 3.17 and 3.18 (tabulated in Appendix-C),
were essentially linear up to failure, except for specimen S-i. Rupture could not
be predicted at large values of A by changes in the CMOD-,A curves. These
curves appeared independent of crack length over the rage of crack lengths tested,
while significant differences in values of the CMOD due to material type were not
apparent until A > 2.0 cm, when the CMOD curve for specimen M-2 became
slightly stiffer than that for the S- specimens. For specimen S-i, the value of
CMOD at a given value of A < 2.0 cm was smaller than the other specimens
and as A increased further, large fluctuations in the CMOD were observed at
A = 4.0 cm, due to damage, and at A = 0.5 and 2.3 cm, smaller fluctuations,
attributed to experimental error, were also present. These smaller fluctuations
were not attributed to significant specimen damage because the load history for
specimen S-i is smooth in these regions. The CMOD leveled off at A = 2.5 cm
prior to failure in this specimen. Similar to the load histories, the three stages
of tearing, that were visually observed, could not be identified by changes in the
CMOD versus A curves.
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Figure 3.16: Composite P - A curve.
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a step size sufficient to provide three digit accuracy. The result of this integration,
JdA versus A. is displayed in Figure 3.22 and, following a least squares fit, the
value of JdA at A = 5.0 cm was extrapolated as 7.5 Nm, corresponding to if =
400kJ/m 2 or, equivalently, a tearing energy, T of 200 kJ/m 2 . This magnitude of
T, is higher than maximum values of 100 kJ/m 2 reported-for filled natural and
SBR rubbers [37,48] and is a consequence of the experimental material and the
specimen design.

First, the experimental material is a tough elastomer designed specifically for use
in Army tank track pads and contains a large percentage of carbon black. The
J-integral was determined for the S- material type, which was more difficult to
machine and tougher than the other types, and consequently, it can be expected
that its fracture resistance would be high. Second, the specimen geometry is
elastically stable and catastrophic failure occurs when an instability is present
in a structure. The basic geometry in this specimen is a short thick cylinder.
more stable than a long cylinder of the same diameter, i.e., a larger applied load
is required to cause an elastic stability. In addition, the specimen geometry.
extended under displacement control, may have allowed a larger amount of stable
crack growth when compared to conventional specimens, thus increasing the value
of T,.

3.8.8 Diametral Changes

Small changes in the inner diameter, d,, were observed during deformation, in-
dependent of both crack length and material type. Figure 3.23 shows diametral
changes, normalized by the undeformed inner diameter, Dinner, with increasing
A. The bulging of the inner cylinder is demonstrated by the small fluctuations,
or ripples, as the specimen deforms and d, decreases, although the magnitude of
these ripples is slightly larger in specimen S-3 compared to specimen M-2.

The amount of permanent set along the diameter was determined by measuring
the diameter along the original crack surface in the fractured female specimen
twenty-four hours after testing. As shown in Table 3.10, the inner diameter did
not significantly change before and after experimentation in any of the specimens,
including specimen S-2 which had undergone a load deformation cycle. The per-
manent set for the single notched virgin specimens was approximately 0.01 cm and
was smallest in the softened specimen, S-2. The increase in diameter in specimens
S-I and M.1 is unexplained and is attributed to experimental error.
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Figure 3.21: Graphical representation of the J-integral.
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Specimen Dinner (cm) de (cm) Permanent Set(cm)
M-1 2.341 2.296
M- 2 2.360 2.346 0.0r4

S-i 2.324 2.335
S-2 2.327 2.324 0.003
S-3 2.197 2.184 0.013

U-1 2.474 2.466 0.008

Table 3.10: Specimen diametral changes.

3.9 Discussion

Experiments were performed to investigate the Mode I fracture in thick elastomers
using a new specimen with a cylindrical dumbbell geometry. This investigation
served two purposes: (1) to design a test specimen for examining failure in elas-
tomers under near plane strain conditions and (2) to observe and quantify the
failure process. The discussion will be divided into two sections, an evaluation of
the specimen performance and design and an interpretation of the experimental
results.

3.9.1 Specimen Evaluation

The design of the test specimen was successful in that the tear behavior, delam-
ination and crack extension of thick elastomers could be observed directly, while
the specimen was deforming. These observations are invaluable to understand-
ing the process of tearing found in these specimens as it is much more difficult
to characterize the fracture process solely on the physical evidence found in the
ruptured specimens pieces. Experimental results from the use of this test geom-
etry were consistent in that failure occurred under large deformations and the
mode of failure, rupture, was common to all specimens. Quantitative results, dis-
cussed elsewhere, were meaningful and consistent with predictions from fracture
mechanics.

However, manufacturing test specimens with uniform geometries and low dimen-
sional tolerances proved a formidable task, as difficulties in manufacturing were
associated with fabricating the specimens frTv rmnlrA-d ,'lr yl;nder, resulting
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in a lack of concentricity between the inner and outer cylinders in the short dumb-
bell specimen and a nonuniform inner diameter, Dinner. Elastomers are known to
require special machining techniques and equipment due to their toughness and
thus, it is recommended that, should this specimen geometry be employed again,
the specimens should be made by experienced machinists orby molding the spec-
imens directly to improve size tolerances.

Although large tolerances in Dinner and L, were found in these specimens, the
tearing process itself was not significantly affected because asymmetric tearing
behavior was found in specimen U-1, which had the most uniform Dinner across
Hi, and the difference in L, along a given diameter was 0.01 cm, the width of
the crack.

The only experimental objective that was not met was verifying the reproducibil-
ity of the quantitative experimental results through the use of two specimens with
equal crack lengths, a consequence of the difficulties encountered in crack manu-
facture. Fabricating the circumferential crack also required special techniques and
skill and could only be successfully made by introducing a small circumferential
notch and then gradually increasing the crack length to the desired value. The
point at which the blade is introduced into the specimen must be carefully chosen
so that the blade is normal to the outer surface along Dinner at exactly the mid-
height of the specimen. Bending of the dumbbell test specimen, due to the lateral
force of the knife, is another source of error. As much as a three percent error was
found between the actual and intended crack length and was attributed to fabri-
cation difficulties. Due to this variation, the reproducibility of the experimental
data for cracks of equal length could not be checked although load histories and
nominal fracture strength were consistent with experimental predictions.

Both sets of grips, those required for specimen fabrication and those used for the
experiment, functioned well and satisfied design criteria. The test specimens could
be easily mounted in and removed from the grips while the grips did not interfere
with machining or experimental testing.

3.9.2 Discussion of Experimental Results

A complex yet distinctive macroscopic tearing process of delamination and crack
extension in the load direction was observed in all six specimens, independent of
material type and crack length. Failure at large nominal deformations, Af - 3,
occurred by rupture of the specimens.

Failure of material layers was observed in two localized regions, along an extended
inner core of material connecting the top and bottom portions of the test specimen.
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and above and beneath the fabricated crack surface, as shown in Figure 3.24.
The inner core represented newly created surface area and was accompanied by
extensive asymmetric blunting of the crack tip region and crack growth normal to
the undeformed crack surface. This process was found even at low deformations
as new surface area was visibly exposed at A = 0.4 cm- or A - 1.16. Just
prior to failure, the length of the extended inner core was approximately 2.5
cm, indicating the magnitude of the large deformations surrounding the crack tip
region and confirming that the size of the nonlinear crack tip zone region extended
far beyond the undeformed ligament length. However near plane strain conditions
are approximated in the blunted crack tip region.

Consider an undeformed volume element of elastomer material at the crack tip
of width, w,, height, ho, and length, 10, as in Figure 3.25(a). Under applied
tensile loading, finite blunting of the crack tip occurs, Figure 3.25(b). The volume
element has been highly deformed to width, w, height, h, and length, 1, while a
traction free boundary condition now exists along the blunted crack surface. The
principal stretch ratios can be represented as

A, = A - h/ho > I

A2 - w/w, < 1 , (3.3)

A3 - 1/o, 1

Noting that A > A2, A3 and invoking the incompressibility condition, A2 can be
approximated as

A2 -, 1/A (3.4)

Thus, the crack tip field in the presence of finite blunting approximates a plane
strain condition, denoted by A, as [A, 1/A, 1].

This elastomer material is fracture resistant because it has strong crack arrest
properties which constrain crack growth along the crack front. The tearing process
observed in this material resists fracture by effectively reducing the triaxial stress
state found at the crack tip region through delamination, viscoelasticity, and crack
growth in the load direction.

Delarnination reduces the magnitude of the mechanical crack tip stress field by the
gencration of new surface area which is free to deform and blunt the initially sharp
crack tip, shown schematically in Figure 3.24. Stresses normal to this new surface
area, the extended inner core, are zero so that the radial stresses found in the
crack tip region have decreased. In addition.the blunting of the crack tip lowers
the magnitude of the load amplitude constants associated with the mechanical
crack tip stress field, decreasing the amplitude of the singularities found there.
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The viscoelastic behavior found in elastomers also enhances fracture resistance by
reducing the strength of the mechanical crack tip stress field after stable crack
growth has occurred. When the crack extends, the newly created surface under-
goes a load deformation cycle and the subsequent material response is softer in
the next loading cycle.

Finally, stable crack growth in the load direction enhances further blunting of
the crack tip, reinforcing the above mechanisms which decrease the triaxial stress
state in the crack tip region. The crack tip is no longer sharp and crack extension
normal to the load direction has been minimized.

Although a value of the J-integral was determined at failure, it would be more
appropriate to consider a J-resistance curve, which measures the increasing resis-
tance to fracture with stable crack extension and where stable crack growth occurs
when J > JR, as shown in Figure 3.26. Here, it is assumed that JR increases with
crack growth or that. with increasing amounts of crack growth, higher stresses and
a larger crack driving force, J, are required. Preliminary experimental evidence
for this type of behavior may be provided by Figure 3.22, where the product of J
and an undeformed area quantity increases with A, noting that crack propagation
begins at low A and then increases with A.

A series of material delamination layers were found in the ruptured specimen
pieces along the perimeter of the fabricated crack tip. The thickness and the
height of the tearing layers increased with distance from the fabricated crack
tip. These size effects may be understood through the failure behavior discussed
previously. The height of the tearing layers increases because the tear plane.
initially found along the mid-height of the deformed specimen, separates into
tear planes above and below the mid-height, which move towards the ends of the
specimen with increasing elongation, as shown schematically in Figure 3.27(b) and
3.27(c) which are referenced to the undeformed configuration in Figure 3.2 7 (a).
A cross-sectional view of the ruptured female piece illustrating these effects is
presented in Figure 3.27(d).

The thickness of the failed material layer can be related to the amount of crack
growth in the load direction, and the increasing amount of crack growth, 6L , ,
is a direct consequence of the delamination process. Localized material failure
along the inner core initiates around small holes followed by separation of the
failed layer of elastomer material from the remaining inner core and retraction
towards the fabricated crack surface. Material separation, or material failure in
shear, commences at the small holes, the initial failure site, and extends in-the load
direction, beyond the fabricated crack surface, and stops in a region where stresses
are lower due to a larger cross-sectional area and distance from the crack tip, refer
to the schematic in Figure 3.28. The amount of crack growth is the thickness at
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the base of the failed layer of material, determined by the distance between arrest
locations between successive failed material layers. As the specimen elongates.
stresses in the deformed inner core are intensified and the size of the nonlinear
crack tip zone becomes larger. and therefore, material separation. or delamination.
will stop at a location which is increasingly further away from the arrest point
of the previous failed material layer, causing the thickness and 6L, to increase.
Therefore, the amount of stable crack extension, 6L,, increases with specimen
elongation where the total crack extension6LTotal, is

6LTotal = 6L, + 6L 2 + - + 6L, , 6L,+, > 5L, (3.5)

When the total amount of crack -xtension in the load direction reached a critical
value, the specimen ruptured.

Several macroscopic features described in the tearing process are similar to Gent's
[42] microscopic observations of fracture surfaces in filled and unfilled rubbers.
supporting the experimental results reported here. Gent [42] reported strands of
rubber stretching across the fabricated tear tip, representing material surrounding
tears which then extend in the load direction. After these strands break, they form
matching crosshatched segments on either side of the torn surface.The plane at
which tearing initiated did not remain constant, but separated into two planes
which displaced by 2 to 10 microns in the load direction. The average distance
between strands of rubber was approximately constant, 10 to 100 microns, the
size of natural defects in rubber, but the thickness of the torn surface was not
measured.

The strands of rubber observed by Gent [42] are similar to those surrounding the
small holes at A < 3.6 cm and those encompassing the entire outer surface of
the deformed inner core at A > 3.6 cm in this experiment and, after failure, the
relaxed strands form the saw-toothed or crosshatched segments. Gent describes
the strands as material surrounding tears which stretch in the load direction. the
tear eventually growing to the length of the deformed inner core. After material
failure, the torn surfaces of the strands comprise the saw-toothed or crosshatched
segments. Crack extension was found in the load direction, above and below the
fabricated crack surface, similar to the vertical displacement of the tear planes re-
ported by Gent. Although the size of the saw-toothed segments was not constant.
but increased in size with distance from the fabricated crack tip, this difference can
be attributed to differences in specimen geometry (thin sheet of rubber [42] versus
short cylindrical dumbbell specimen) and load conditions (bending load [421 to
attain a specified rate of tearing versus a constant strain rate). Because sectioning
of the ruptured test specimens, (required for further microscopic analysis), was
not performed, additional comparisons could not be made.

Gent [421 proposed that tearing occurs by the linkage of secondary cracks, shown in
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Figure 3.29, followed by extension in the load direction, causing vertical splitting
at the fabricated tear tip . This type of tearing was visibly observed in this
investigation at large deformations, A > 3.6 cm.

Cavitation was not observed directly although it is presumed-that the small holes,
sites of localized material failure along the deformed inner core, all initiated from
cavities or small defects. The experimental results are more consistent with Gent's
model of the tearing process, the joining of secondary cracks across the fabricated
crack front and do not confirm the failure model of Fukahori and Andrews [49],
referring to Figure 3.30, where the fabricated crack overtakes and joins a secondary
crack front located ahead of it because the elastomer strands connect material
above and below the fabricated crack surface. Physical evidence confirms that
material separation occurs between the deformed inner core and the material
surrounding it.

The tearing model, Figure 3.31, proposed on the basis of this experiment is the
initiation of material failure between the fabricated crack surfaces around small
holes, followed by material separation of the failed material layer from the de-
formed inner core. Delamination occurs in the load direction and is arrested
when regions of lower stress, above and beneath the fabricated crack surface, are
encountered. The depth of the arrest point into this low stress region determines
the thickness of the failed material layer and the amount of crack growth in the
load direction. The benefits of this tear behavior is that blunting of the crack
tip reduces the stress state at the crack tip. preventing crack extension along
the plane of the undeformed crack front. Crack extension in the load direction
enhances continued crack tip blunting while the stress softening of new surface
area associated with crack extension further minimizes triaxial stresses. Speci-
men failure occurs when crack growth causes rupture. This model also explains
the asymmetry of the failure process as the defects or microvoids which initiate
tearing are not homogeneous throughout the specimen.

Key features of the failure process observed here have also been reported in the
failure of thin elastomer sheets, i.e., asymmetric blunting of the crack tip, sub-
critical crack growth, and crack extension in the load direction [9,50,48]. At low
deformation rates and room temperatures, associated with smooth tear behavior,
crack extension has been reported to deviate slightly from the plane of the crack
towards the load direction in deeply notched thin elastomer sheets. However, the
extent of deviation observed in this investigation is more representative of deeply
notched thin elastomer sheets tested at high temperatures, where knotty tear be-
havior can be found. In addition, the magnitude of the tearing energy and nominal
fracture strength are high when compared to similar elastomer compounds [50,48].
In this investigation, tearing was found with a continuously increasingly load until
just prior to failure, accompanied by crack extension in the load direction. Torn
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layers of material, successively increasing in size with distance from the fabricated
crack tip, were found but the ruptured fracture surface was smooth.

Based on the single set of experimental tests performed here, thickness appears
to enhance fracture resistance in deeply notched specimens. The precise cause
of this increased fracture resistance remains unknown, but the stability of the
specimen geometry probably plays an important role in the fracture process. The
specimen geometry, as well as the geometry of the testing system, could influence
the viscoelastic and fracture properties of this material so that fracture resisting
mechanisms are enhanced.

The tearing process of elastomers under large deformations is quite complex and
includes stable crack growth in the load direction. A finite element analysis of
the observed fracture behavior was not performed. The finite element model
would have to be carefully designed to allow for crack extension in the load di-
rection. In addition, a specific criterion for crack extension, (i.e., at what values
of the J-integral does stable crack extension occur ?) would have to be adopted.
However, the numerical analysis would provide much useful information such as
the characterization of the crack tip field and its region of dominance. Sites of
tear initiation may also be identified through the stress field. Finally, the analysis
would quantify the reduction in the intensity of the crack tip field due to blunting,
delamination, and crack extension.
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(a) Referenced to the undeformed configuration.
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(b) Referenced to the deformed configuration.

Figure 3.24: Delamination of the fabricated crack tip.
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(a) In the undeformed configuration.

Figure 3.25: A volume element of elastomer material at the crack tip.
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(b) After blunting of the crack tip.

Figure 3.25: A volume element of elastomer material at the crack tip.
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Figure 3.26: An example JR curve.
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(a) Referenced to the undeformed configuration.

Figure 3.27: Increasing height of the torn material layers with specimen elonga-
tion.
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(b) At low A.

Figure 3.27: Increasing height of the torn material layers with specimen elonga-
tion.



3.9 DISCUSSION 174

t Load

A B

Material Separation Fabricated Crack
Away From Surfic e
Deformed Mid-Height

D C

Load

(c) At high A.

Figure 3.27: Increasing height of the torn material layers with specimen elonga-
tion.
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Delaminated Material Delaminated Material

Layer at Low A Layer at High A

(d) A cro6s-sectional view of the ruptured female piece.

Figure 3.27: Increasing height of the torn material layers with specimen elonga-
tion.



3.9 DISCUSSION 176

i Load

Fabricated
Crack Surfaces

Delamnination in
SL Load Direction

8L2l-

8L3

Arrest in Low
Stress Region

Load

Figure 3.28: Increasing 6L, with specimen elongation.
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iTear Plane
( a ) . . . .. . . . . .. . . . .. . . . .. . . .. . . . .. . . . .. . . .. . . . .. . . . .. . .. . . . . .. . . . .. . . .. . . .. . . . . .. . . . .. . . . ..

(b) AE 
BD

BD

(c)

A D

Proposed mechanism of step formation.
(a) Formation of secondary cracks at tear tip,
(b) jining of secondary cracks,
(c) sketch of joined cracks in the stretched state.

Figure 3.29: Micromechanical model of tearing by Gent. From Gent, A. N. and
Pulford, C. T. R., Micromechanics of fracture in elastomers. J. Mat. Sci. 19
(1984) 3612.
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(a) * (b)
(1.)

~(c)

(2.)

(3.)

Formation of roughness by secondary fracture (schematic);
(a) crack, (b) stress-raiser, (c) secondary crack,
(d) roughness step caused by diversion of primary crack.

Figure 3.30: Micromechanical model of tearing by Fukahori and Andrews. From
Fukahori, Y. and Andrews, E. H., Fracture surface roughness in highly deformable
polymers. J. Mat. Sc. 13 (1978) 777.
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(b) Delamination and Crack Extension.
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(c) Crack Tip Blunting and Continued Tearing.

Figure 3.31: Prop&,wed tearing model.



Chapter 4

Conclusions

A thickness effect is present in the failure of elastomers in Mode I fracture and was
found in both the computational and experimental studies. The computational
analysis of a plane strain crack showed that the nonlinear crack tip field differs
from that found under plane stress conditions. Experiments on carbon black filled
elastomers demonstrated that the failure process is characterized by extensive
blunting of the crack tip, successive delamination of material layers in the crack
tip region and crack extension in the load direction.

4.1 Computational

A finite element analysis of a plane strain Mode I crack in an incompressible
material was performed under the assumptions of small scale nonlinearity. The
finite element mesh was coarse in the immediate vicinity of the crack tip, of radius
10-iL, but was then further refined to verify the nonlinear elastic asymptotic
solution [5] at larger radii and to deternmne its region of dominance. The effect
of the constitutive model on the asymptotic solution was examined by using two
invariants of the Rivlin material model, the Mooney-Rivlin law (n = 1) and the
third order invariant (n = 3). Finally, a local cavitation criteria [22] was used
to predict failure and was applied to find a critical length scale defined by the
microstructure of the material, i.e., the mean particle spacing between carbon
black aggregates.

The highly localized nonlinear elastic crack tip field, of radius 10-4 L around the
crack tip, is characterized by large deformations and rotations and is surrounded
by a reg'on of small deformations and large rotations. The conditions of small

ISO
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scale nonlinearity were satisfied at all load levels while the J-integral was path
independent throughout the refined mesh region, for all r > 10-6L for both con-
stitutive models.

The nonlinear mechanical crack tip field confirmed the presence of the nonlinear
elastic asymptotic solution. The r22 stress component, containing the dominant
singularity, o( r- ), showed the closest agreement with the nonlinear asymptotic
field and was much larger than r12 , o(r- 1 1 2 ), and 7,,, o(1). As r increased, the
stress field gradually transitioned to the linear elastic asymptotic field. The de-
formation field exhibited similar behavior. The nonlinear elastic asymptotic de-
formation field was present at small r. but as r increased, the deformation field
slowly changed to the linear asymptotic solution. The crack surface (0 = 180)
was parabolic with a tip radius of curvature equivalent to that of the linear elastic
solution. Because the nonlinear region was small, the load amplitude constants, b
and d, associated with nondominant terms in the nonlinear elastic solution could
not be determined with accuracy, but were of o(1). Further mesh refinement in
the nonlinear zone could assist in finding the magnitude of these constants.

The effect of the order of the invariant of the constitutive model on the asymptotic
solution was seen primarily in the size and shape of the zones defined by material
and kinematic nonlinearities. When the mechanical crack tip field for (n = 1)
is compared to that of (n = 3), the region containing material nonlinearities is
approximately the same size but is more elliptic in shape, in contrast to the region
of kinematic nonlinearities. which has the same shape but is larger in magnitude.
For both analyses. (n = 1) and (n = 3), nonlinear material behavior completely
surrounds the crack tip while large rotations are not found in front of the crack
tip but are located above and behind it.

The additional finite element kinematic constraint, Figure 2.20, applied for (n = 3)
influenced the nonlinear elastic stress field by replacing the square root singularity
for .\ as r -- 0. predicted by the nonlinear asymptotic solution, with a weaker
singularity. Subsequently the magnitude of the stress field was reduced. Also.
oscillatory behavior was found in the -11 stress component and r 2 reverted back
to the linear elastic solution at small r in the refined mesh region only for (n = 3)
and these results may be related to the weaker singularity at the crack tip

The findings of this computational analysis show that, in the problem defined, the
nonlinear region is highly localized compared to the crack length and that the local
cavitation criterion is satisfied in the transition region between the nonlinear and
linear elastic asymptotic fields. Because failure is known to initiate at small loads.
the linear elastic fracture mechanics approach can be useful in examining failure
under plane strain conditions in elastomers. assuming small scale nonlinearity or
that the effects of finite strain are negligible. At the onset of crack propagation.
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a critical cavitation event was predicted at 0.006 mm ahead of the crack tip,
consistent with the amount of experimentally reported subcritical crack growth
which has already occurred. However, the physical significance of this result
requires further study due to the material delamination, molecular alignment,
and shear failure which can be found in the nonlinear crack tip region. Finally
this computational investigation was performed under small scale nonlinearity.
where only small geometry changes and linear material behavior are found far
from the crack tip. The effect on the mechanical crack tip field due to finite strain
loading was not determined.

4.2 Experimental

The experimental investigation demonstrates that a thickness effect exists in the
failure of filled elastomers as the fracture resistance is enhanced by specimen
thickness. Although only a single set of tests were performed. similarities to the
fracture process in thin elastomer sheets were observed, while fracture strengths
and the catastrophic tearing energy were greater than that reported for SEN
specimens of similar elastomer compounds. The deeply notched test specimens.
having a short cylindrical dumbbell geometry, were newly designed and functioned
well as both quantitative data and a visual description of failure could be directly
and easily obtained.

Ultimate failure of the test specimens under load occurred by rupture under fi-
nite strains, A! - 3, but was preceded by asymmetric blunting of the crack tip.
delamination and small amounts of stable crack growth in the load direction.
Localized sites of material failure were found at two different places in the test
specimen, between the fabricated crack surfaces, and above and beneath the fab-
ricated crack surfaces. Between the fabricated crack surfaces, tearing of elastomer
material around ellipsoidal holes was observed, where the torn surfaces resembled
saw-toothed or crosshatched segments. Associated with tearing was the delami-
nation of a surface layer in front of the blunted crack tip region. Delamination of
the failed material layer continued in the load direction, stopping at sites above or
below the fabricated crack surface. Consequently, material failure was also found
above and below the fabricated crack surface, leading to crack extension in the
load direction. This failure process, tearing,delarmination, and crack extension in
the load direction, continued until the specimen ruptured. Rupture was initial-
ized at a site above or below the fabricated crack surface, causing the specimen
to break into two pieces, a male and a female.

The failure process was observed even at small deformations and continued with
increased loading until rupture. However. as the specimen elongated, physical
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characteristics associated with tearing, delamination, and crack extension inten-
sified. described below. At low deformations, the torn surfaces were blunted and
the delaminated material layer was thin, while the incremental amount of crack
extension in the load direction was small. In contrast, at large deformations, the
torn surfaces became more jagged while the thickness of the delaminated mate-
rial layer and the incremental amount of crack extension in the load direction
increased.

Each characteristic of the failure process prior to rupture, i.e.. blunting of the
crack tip, delamination, and crack extension in the load direction, reduces the
intensity of the stress field in the region of localized material failure, lowering the
energy available for crack propagation. Viscoelastic effects, or stress softening of
newly created surface area which has undergone a load deformation cycle, also
contributes to lowering the triaxial stress field.

Two parameters. material type and fabricated notch length, were varied in this
experiment. Within batch variations observed during specimen manufacture led to
the separation of the specimens into two groups, those easy (M-) and those difficult
to machine (S-). A third material type (U-) was introduced by a prototype used
to test specimen fabrication techniques. Notch lengths varied from 0.518 cm to
0.658 cm. While the same failure process, described previously, was observed
in all specimens independent of crack length or material type, the experimental
data demonstrated the influence of the material type and the notch length. Load
and CMOD histories. essentially linear for all specimens, were more stiff for the
M- specimens and the single U- specimen. However, within a material type.
load histories were softer with increasing crack length, consistent with fracture
mechanics theory. The effect of the crack length on the CMOD history over the
range of crack lengths tested was less apparent.The load and CMIOD histories were
smooth and could not be correlated with the ongoing tearing and delamination
behavior observed during the experiment. However, rupture of the specimens was
preceded by a sudden decrease in the slope of the P - A curve.

The value of the J-integral at rupture. determined for the S-specimens, was higher
than previously reported values for filled elastomers in conventional test specimens
and was attributed to the stability of the cylindrical dumbbell geometry and the
toughness of the material. Finally, the applicability of a J resistance curve was
considered, given the stable crack growth found experimentally.



4.3 RECOMMENDATIONS FOR FUTURE WORK 184

4.3 Recommendations for Future Work

As this experimental investigation represents a preliminary study of failure in
thick filled elastomers, involving a new specimen design, much additional work
remains to be accomplished. To compiete the research started here, the ruptured
specimen pieces should be sectioned to measure the amount of crack growth in
the load direction for each delanrinated material layer. The tearing energy should
be experimentally determined in a conventional test specimen for this material to
confirm differences in the failure process, such as the amount of subcritical crack
growth, which are thickness dependent.

Should this experiment be repeated, it is recommended that the test specimens be
molded to obtain a more uniform geometry. However, variations in material prop-
erties may still be present as a result of curing inhomogenities in thick elastomers.
Consequently, a sensitivity study should be performed to determine the tolerances
on notch length and reproducibility of the experimental data, i.e., the maximum
tolerance in notch length which does not produce significant differences in load
and CMOD histories. Finally, improved techniques for introducing the notch and
minimizing the difference between the intended notch length and the actual notch
length, which can only be determined after failure, should be developed.

The effect of strain rate, temperature, carbon black concentration, fatigue loading.
and the use of stress softened materials on the experimental results should also
be investigated. It is possible that experimental load histories in softer, unfilled
elastomers may show some load fluctuations during the failure process, similar
to load fluctuations fond at the onset of cavitation in cylinders [3]. Finally
an experimental procedure should be devised to determine a J-resistance curve.
requiring measured amounts of crack growth with increasing load.

A finite element analysis should be conducted to model this failure process and
determine the stress fields in the highly localized regions of failure and the radius of
the nonlinear crack tip field. Although incompressibility may be initially assumed.
viscoelastic effects should be noted to determine the importance of stress softening
in decreasing the strength of the stress fields. A computational analysis would also
quantify the reduction in the triaxial stress field due to delamination and crack
extension and may also be used to predict the site below the fabricated crack
surface where delamination of a torn surface layer is arrested.

Furthermore, this computational analysis would demonstrate the effect of finite
strain loading on the nonlinear asymptotic field [5] in plane strain and determine
the magnitude of the load amplitude parameters, including their relationship to
the applied load. The J-integral should be evaluated as a measure of the tearing
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energy, which can then be compared to experimental results, and to confirm its
path independence. The application of Ball's local cavitation criteria would also
show if cavitation would still occur in the transition region, as in small scale
nonlinearity, or further away from the crack tip. Finally, the Rice-Johnson failure
model (30] could be used to find the relationship between experimentally measured
failure quantities and microstructural material properties.
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Appendix A

Derivation of the Asymptotic
Solution for a Plane Strain Crack
in a Mooney-Rivlin Material.

The derivation of the asymptotic solution for a plane strain Mode I crack in a
Mooney-Rivlin material will be presented in this appendix. This solution was first
obtained by Knowles [5], in conjunction with Sternberg, under the assumptions
of finite strain elasticity. Knowles [5] considered the dominant singularity plus
higher order terms necessary for a one to one mapping between the deformed and
undeformed coordinate systems. Stephenson [6] extended the asymptotic solution
to include additional terms. Although Stephenson [6] used a constitutive model
which allowed for hardening and softening in shear, attention will be restricted
to the case of linear behavior in shear. This constitutive model is known as the
Mooney-Rivlin material law.

A.1 Plane Strain and Finite Elasticity

Consider a deformed coordinate system. Y,, and an undeformed coordinate system.
X,. It is assumed that y, is twice differentiable and that

g1 = 1+ ILI . (A.1)

190



Plane Strain and Finite Elasticity 191

where u, denotes the displacement. The deformation gradient is represented by
F,,, where

F = y, (A.2)

Under the assumptions of incompressibility, the determinant of F,, equals one.
The deformation gradient can be decomposed into an orthogonal rotation tensor,
R,, and a symmetric right stretch tensor, U,,, thus,

F,j = R, kUkj . (A.3)

The tensor Ui, is positive definite. The principal values of U, are defined as the
principal stretch ratios, A,. The principal stretch ratios are real, positive, and
invariant. They are used to define the principal strain invariants, I,, given by.

I, = 2 + 2 + A2 2

1, 2  3 +,1\
12 = A2A2 + AA2 + AA2 . (A.4)

1" __ , 2 2 3 1

13 1= 23•

For incompressible materials, 13 equals one and, under the assumptions of plane
strain. A3 equals one. From equation (A.4)

L3 =1 A' (A.5)

and consequently, it is eazily noted that

A, = l/A 2 • (A.6)

For incompressible materials in plane strain, it can now be determined that 11
equals 12. By substituting equation (A.6) into the definitions for 11 and 12 in
equation (A.4), it is found that

11 = + I/,' + I
(A.7)

12~ ~ = 1+/1A

In this analysis, the strain invariant is denoted by 1, where

I = I1 = /2 (A.S)

Expressed in terms of the deformation gradient, the strain invariant, 1, becomes

I = trFTF (A.9)
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The Cauchy stress is denoted as 7, . In the absence of body forces, equilibrium is
given as

= 0 , (A. 10)

where (e), = ( .)!aj 1. The nominal stress, 0', is defined by

(7,j = rkFk (A.11)

Again, in the absence of body forces, the equilibrium condition is

(7, j = 0 , (A.12)

where ('),j = Q(.)i8.r. While the Cauchy stress is symmetric, the nominal stress
is not. However, it is noted that

=,Fik = FkO'2 k . " 13)

The nominal and Cauchy traction vectors are represented by s, and t,, respectively.
where

s inj (A.14)

and
, = Tn . (A. 15

The unit normal in the undeformed configuration is n, and the unit normal in
the deformed configuration in the deformed configuration is n. The relationship
between n and n" provides that

n= Fn . (A.16)

where n" has been rotated and stretched through the deformation gradient. The

magnitude of n' is scaled by the determinant of F. which equals one under incom-
pressibility and, therefore, n" is a unit normal. The significance of this definition
of n" is that s, vanishes in the undeformed configuration if and only if t, vanishes
in the deformed configuration. Thus, the boundary condition at a traction free
surface can be specified by ou without 1.nowing the deformed shape of the surface.

The strain energy per unit undeformed volume, ', is assumed to be a function
of the strain invariant, I. For a Mooney-Rivlin material

2)

where pu is the shear modulus. This constitutive law assumes the material is

homogenous and isotropic. For this constitutive law, the nominal and Cauchy
stresses are expressed respectively as

9W
S= 2 F - pF - (A.S)
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and
7- = 20WFT-p (A. 19)

3I

The indeterminate pressure, p. is a consequence of incompressibility and is deter-
mined to specify the boundary conditions and equilibrium. "

Disb.,cement equations, derived from equilibrium, equations (A.12) and (A.1S).
and incompressiblity (13 = 1). are elliptic at the solution vector, u,, and at any
material point x, if and only if

3W 30ado2W/01p
-# 0 and 2 (-2)--i >0 . (A.20)OI OW/Ol

This was proven by Abeyaratne [52]. For a Mooney-Rivlin material, the ellipticity
condition in equation (A.20) is automatically satisfied.

A.2 Description of a Mode I Crack

Consider an infinite body containing a stationary crack of length 2L, as shown
in Figure (A.1). The crack faces are traction free and a uniform uniaxial tensile
stress normal to the crack is applied at infinity. Along the crack faces, the traction
free boundary condition is represented as

O'c,2(Xl,.O+) =0
-L <x, < L (A.21)

0-)= 0 J
Given these boundary conditions, the deformation field, yi, which satisfies the
constraint of incompressibility, and the stress field, r,, will be found. It is further
required that

P=Fx as x + x - (A.22)

Here, F* is a constant tensor whose determinant equals one. The deformation
field. y,, is twice differentiable and continuous throughout the body. The defor-
mation gradient at infinity, F*, can be defined as

A00
F* 0 A' 0 for A >0 , (A.23)

0 0 0

provided A and A- are the principal stretch ratios applied normal to the crack at
infinity. The symmetry axes of F are y, for a Mode I crack, where the crack is

parallel to the yl-axis.
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A.3 Asymptotic Solution

This finite strain asymptotic solution was derived by Knowles [51 and Sternberg,
and by Stephenson i6]. A description of their method of solution follows. First.
a separable form of the deformation field is assumed. Next, a rigid body rotation
about the origin is applied to the deformation field. Based on the constraints
imposed by incompressiblity, equilibrium, and the boundary conditions, an eigen-
value problem is formulated and solved. Using the resulting deformating field, the
determinant of the local deformation field and the pressure field are evaluated. If
the determinant vanishes or if only a weak approximation of the pressure field is
obtained, additional higher order terms are included in the deformation field and
the entire anaylsis is repeated. Knowles [5] and Sternberg follow this procedure
tice, While Stephenson [6] repeates it for a third time. Their solution is outlined
below.

The undeformed coordinate system in Figure A.1 can be redefined in terms of
polar coordinates as

x,-L= r cos 9)
x = SO 10 < r <-: -7r <9< 7r (A.24)

x = r sin9 J

The deformation field is assumed to be of the form

y - L+r m v1 (O)
-r_<_<r , (A.25)

Y2 - r'mv 2(O) I

where the function v , (a = 1,2), are twice differentiable and continuous. The
constants m, are positive because the displacement field must be finite at the
crack tip. In addition, either m, and/or m 2 must be less than one to ensure that
not all deformation gradients will be bounded at the crack tip, thus

m,, > 0 either m, < 1 and/or M 2 < 1 . (A.26)

If m, > 1 then the strain invariant and the determinant of F would vanish as
r -- 0 and the crack tip would undergo extreme contractions. If (m = 1 and
m2 > 1) or (in1 > 1 and M 2 = 1) then I and the determinant of F are still
bounded as r - 0. Therefore, at least one of the two exponents, either m, or m.
must be less than unity. A separable form of the pressure field is represented as

p(xI,X 2) - r k p(O) as r -, 0 . (A.27)

This pressure field is once continuously differentiable. Under the assumption that
the deformation and pressure fields can be characterized as separable functions
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of r and 0, the governing field equations and the boundary conditions can now
be redefined in terms of the partial derivatives of the deformation field. The
incompressibility condition is satisfied when the determinant of the deformation
gradient equals one. For a polar coordinate system. this condition is given as

= 1 (a 0 Y2 0 Y2 yA.r Or 90 & O . = 9A28

The definitions of incomnressiblity (A.28) and the nominal stress tensor (A.18)
can be applied to the equilibrium condition in equation (A.12) to obtain

Op a- =/ P Y" (A.29)
Or Or .)

and
O--' = 2 Y"V (A.30)

The strain invariant. I, in equation (A.9), can be expressed in terms of the partial
derivatives of the deformation field as

1
I = g 09 (ge A.31)

r2
where

OgY OC
= Or Or

gee = O0 a0 (A.32)

ay" Og

Or a6

The boundary conditions in equation (A.21) require that the crack faces are trac-
tion free. Given the deformation field and the nominal stress tensor (A.18), these
boundary conditions are characterized at 0 = ±r as

2 Oyi Oy2

2-a-+ rp = 0
0 Or

4A.33)

OY2 OYI
&0 "J'-r

Applying the incompressibility constraint (A.28) and the definitions in equa-
tions (A.32), the above boundary conditions, at 0 = ±ir, now become

2,u 24

gr- r2 Jac'

(A.34)

gr9
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The first boundary condition is obtained by multiplying the first equation in equa-
tion (A.33) by y2 /r and the second by y 1 /r. The equations are then added and
simplified using equations (A.2S) and (A.32). The second can be determined
in a similar manner. For a separable form of the deformation field as in equa-
tion (A.23), incompressibility (A.28). equilibrium (A.29), and the boundary con-
ditions (A.33) and tA.34) can now be applied. Solutions to m, and u, which
satisfy these equations will be examined. First, however, a new form of the defor-
mation field in equation (A.25) is found by applying a rigid body rotation of the
deformed body about the origin. The pressure field remains invariant under such
a rotation. It can be shown that a deformation field U, exists, such that

y r as r -, 0 . (A.35)

The smallest exponent m in the range between (0, 1) and the functions U which
satisfy the governing field equations and the boundary conditions will now be
found. Based on the deformation field in equation (A.35), the strain invariant.
r. will be determined. The incompressibility constraint, the boundary conditions
and equilibrium are used to formulate an eigenvalue problem in terms of M and
U,, which is then solved to determine r and U. Once the deformation field in
equation (A.35) is updated, the pressure field. p, and the determinant of the defor-
mation field are evaluated to determine if higher order terms are necessary. higher
order terms are required in the deformation field if the determinant vanishes or if
a weak approximation of the pressure field results.

Given the deformation field in equation (A.35), the invariant, I, in equation (A.31)
is expressed as

I - n-1) {L,2(9) + U-(0)±+M2 [t-2(g) + 6-(0)}. (A.36)

where (.) differentiation with respect to 0. The coefficient of r2(M- 1) must not
vanish on the domain [-7r, ir]. Consequently. it is assumed that U1(9) and U2(9) do
not have common multiple zeros over the domain. The incompressibility condition
(A.28) becomes

= 2m- 1 ) Lt 2 9) +0 (= 1 (A.37)

This equation is divided by r2 (m- 1 ). Since the constant m is less than one, in the
limit as r -, 0,

U1U2 -U 2U' = n 2-1,7' (A.38)

Thus, U, must be of the form

for a-ucinY on [--ad 7] witon n .A.'

for a function U(0) and constants a..
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The above definition of U. is now applied to the deformation field in equa-
tion (A.35) to obtain

y, - r ' aU(0) as r - 0 (A.40)

Baseci on the current form of the deformation field, the equilibrium condition is
expressed as

SMe m U(9)Z(O)

(A.41)
ap ,u a2 r2(m- 1) U'(0) Z(9)

where

on [-,r,7r] (A.42)
Z = U+M 2 UJ

The boundary conditions in equation (A.34) become

UU = 0'
p jat 0=±7r (A.43)

p ,, U a 2 r ( 2 ( m - 1)  U 2

Now it is proven that equations (A.41) and (A.43) can be satisfied simultaneously
if

Z = 0 on [-7r,-7r]
(A.44)

&(-r) = U(+ir) = 0.

First, the partial derivative of the pressure field in equation (A.41) with respect
to r is integrated, providing

P , lia2 r 2(m-1) m U(9) Z(9) (A.45)
2(m - 1)

The first boundary condition in equation (A.43) and the assumption that U(9)
has no multiple zeros on the domain [-7r, 7r] implies that either U(7r) or 67(7r) must
vanish. If it is assumed that

U(7r) = 0 and &(7.) $ 0 , (A.46)

then from equation (A 43). the prq,,irc field at 0 = 'r is

P r,,i) = o ( r2(M- 1)) as r -. 0 (A.47)
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This contradicts the value of the pressure field in equation (A.45), which vanishes
at 0 equal to -r. For both equations to be satisfied at 9 = ,r, it is necessary for

= 0 and
Z(,r) = Z(-7r) = 0 (A.48)

If equation (A.45) is differentiated with respect to 9 and subtracted from the
second equation in (A.41), it is found that

2+ 1+ 2(1-)1 Z& = 0 on r-7r, r] (A.49)

At 0 = -r, & and, consequently, Z equals zero. Similar arguments can be made
for 9 = -7r. Because both Z and Z vanish at 9 = ±7r, Z must vanish over the
domain [-r, 7r], or

Z(o) = 0 on [-r,ir] (A-50)

Based on equations (A.42)and (A.44), an eigenvalue problem can be formulated
as

U + m2U = 0 , (.(±-r)=0.)

The solution to equation (A.51) provides an eigenvalue and an associated eigen-
value given respectively as

m = 1/2.
(A.52)

U(8) = sin(0/2)

The deformation field in equation (A.40) is now given as

le, = ri/2a, sini(0/2) . (A. 53)

However, when this deformation field is substituted into the pressure field, equa-
tion (A.45), and the determinant, equation (A.37), the results provide

J = o(r2('-1)

I as r - 0 (A.54)

p = o(r - ')

This deformation field is inadequate because it provides only weak estimates of
the pressure field and the determinant of the deformation field equals zero. Conse-
quently, the lowest order appproximation to the deformation field does not provide
a one to one mapping between the undeformed and the deformed coordinate sys-
tems. Higher order terms are required in the deformation field. A new deformation
field is give' iq

y.(r,9 ) = ajrm U(O) + r' V.(8) + o(r ' ) (A.55)
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The constant m' and the functions V, (0) will be found assuming

Mn > m . (A.56)

The deformation field is smooth and twice differentiable.- The process used to
determine U(0) and m will be reapplied to evaluate m' and V1,(O). However, the
result will be the formulation of two eigenvalue problems. From the application
of the incompressibility constraint, the first eigenvalue problem will be found.
When the boundary conditions and equilibrium are considered, a second eigen-
value problem will result. The constant m' is the eigenvalue common to both
problems, which will then be solved to provide a solution for m' and V'(9).

First, the determinant, equation (A.2S), is found for the deformation field in
equation (A.55),

J = a~rm+m 2' (mUii - rn'F) + o (r-+m) 1 (A.57)

Here, T represents the function

= a V2 - a2V1 ,on [-7r,7r] . (A.53)

The determinant in equation (A.57) is divided by rm+
n '- 2 and, in the limit as

r - 0, it is required that
m + m' - 2 < 0 , (A.59)

in addition to

mU41 - m'Uk = 0 on [-r, ,r] if m < m' < 2 -- m , (A.60)

and

mU - m'UP = 1 on [-7r,7,] if m'=,2-m . (A.61

The strain invariant, 1, equation (A.31) is determined to be

I - r(m-am2 G + rm+m' 22K + r 2 ( "' - [m22 (V2 + -22) + 1>2+ 1>2] , (A.62)

where
K + mm' U

K ,on [-7r, 7r] (A.63)

G = U2 + mU 2

with the function X defined as

= aiVa + a 2 V2 (A.64)
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Over the domaiii [-r, -j, the functions V and V2 must not have common multiple
zeros to prevent the coefficient to r2 (m' ' ) from vanishing. When equilibrium is
applied through equation (A.29),

lap 2m-3a2MU M2U +

ki Or

+rmn+m'- 3 (mU (m/2 x + X)+ 2mX (M2U + 0)]
+2m'-3mI[VI (m2 Vi +V) + V (M2 V +V)

(A.65)
l op - r2(m1)a 2 ( [mMU + 0]

00

+rri' - 2{ (M2U + ) + 6T( Q2(+.)

+r2(m'- 1) (mI2V + + P2 (m2V2 + f,

The value of p at 0 = ±7r is determined from equation (A.34),

p( -T) -r 2 (m-1) a 2 i + rm+m'-29-)(&i + r 2 (m' 1 ') ((Q1 + (A.66)

Now, Stephenson [6) defines a function Y(O) such that

Y =G (x + mr2<) +2K (0+ M2U) (A.67)

Following the same arguments which proved that Z = 0 in equation (A.50), it can
be shown

Y = 0 on (-7r, 7r] if m<m'<2-m , (A.68)

and
Y = 2(U+mU) on [-ir, 7r] if m'= 2-rm (A.69)

The boundary conditions, equation (A.66), are restated as

,(==r) = 0 if m<m'<2-rn , (A.70)

,(-r) = 0 if m <m'<2-m , (A.71)

and
i(r) =1/mU(T)

if m'= 2-rm (A.72)
(-)= llmU(-ir) J

The two eigenvalue problems can now be reformulated. The first eigenvalue prob-
lem results from equations (A.67), (A.68) and (A.70), or

G(+m')+2K(U+ 2U) ==0 if m<m'<2-m (A.73)

'( 0J
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The boundary conditions in equations (A.71) and (A.72) are implicitly stated in
equations (A.60) and (A.61). To obtain a solution for tI, it is further assumed
that 'I has continuous derivatives of all orders over the domain [-Itr, 7]. The
second eigenvalue problem is to find all values of m' on (in,2 - m) such that q, in
equations (A.60) and (A.61) will be continuously differentiable. The solutions to
these eigenvalue problems will now be presented. A value for m' is found which
satisfies both eigenvalue problems with eigenfunctions represented by k and I'.

Consider the eigenvalue problem posed by equations (A.60) and (A.61). Given
that U represents the eigenfunction to equation (A.56), it can be concluded

¢, 53rn/ (,7 ]1as r --*0O (A.74)kP = 3U~l' on(07r

il = a4 U -m''m on [-rO) J

where a 3 and a 4 denote constants. The value of m'/m is a positive integer as %P is
infinitely smooth and differentiable over the domain [-7r, r]. The smallest value
of m', for m' greater than m, which satisfies equation (A.74) is

m' = 2m = 1 (A.75)

The eigenfunction P becomes

4I1 = bU 2 
. (A.76)

The constant b2 is nonzero.

The first eigenvalue problem, equation (A.73), is now considered. The function x
is redefined as

= ' + X" on[-r, r] , (A.77)

provided 21x -0/]}V'(0) = [y(0)- (-]
-. r< 0 < . (A.78)

= +[x(9)+ x(-9))
The original eigenvalue problem will be reformulated into two new ones. The new
eigenfunctions will be <' and y". Once y' and -t" are determined, a solution can
be found for <. The eigenvalue problem posed in equation (A.73) becomes

G +~ +mr2,') + 2K' (u+ m2U) -0 on [0, 7r] ,(A. 79)

G ("+ my")+ 2K"(U +rn2U) = 0 on [0, 7r] , (A.80)

with

K' = 'U + mm'x'U and K" = ""U + mm'"U (A.8)
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The boundary conditions, equation (A.70) , are obtained in terms of k' and ",
equation (A.78), or

, '(7) = 0 : i'(0) = 0 (A.82)

= 0 ."(0) = 0 . (A.33)

The eigenvalue problems for y' , equations (A.79) and (A.82), and for k". equa-

tions (A.SO) and (A.83), can now be solved.

The eigenvalue problem for "k' was solved by Knowles and Sternberg [52] by trans-
forming equations (A.79) and (A.82) to

IV( ) + \ 2 w(j) = 0 on 0 < 1 < -/2

IiW.;(0) = w,(-r/2) 0

using
cos(,) cos 0/2

TV, = 10'06) (A.85)

A =4rn ' 2

Here, a one-to-one mapping was introduced over the interval 0 < 0 < -r onto
0 < < -r/2, in which 0 = 0 and-0 = r is mapped to = ir/2 and =0.
respectively. The solution to this problem is

IV, (A) ==j (j = 1,3,5,...) , (A.86)

where b0 is a constant.

A similar transformation is made to solv" equations (A.80) and (A.83). Let

W 2(O)= 1-"k(o) (A.S7)

and the eigenvalue problem is now

r2 ( )+ AW 2( ) = 0 0< 7r/2
(A.88)

W,(0) = W(7/2) = 0

Its solution is

W 2 ( )=bcos , =j (j =2,4,6 ... ) (A.89)

where b, denotes a constant.
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Values of m' representing eigenvalues of the problem posed in equation (A.73) are

4rn = ja (j = 1,2, ..... ). (A.90)

Becau-e ;n' is greater than m. the minimum value of m' is fotnd when j = 2.
Cuiisequently,

= 1 A.91)

The eigenfunction, k, can now be found. For j = 2, '(8) vanishes over the range
and the function \" in equation (A.87) provides a solution to k. From

the definitions for \" (equation (4.73)) and cos( ) (equation (A.%5)) k can be
expressed as

y(O) =1 cos0 . (A.92)

Consequently. the solution t, the deformation field in equation (A.55) has been
determined in terms of auxiliary functions, 4D (equation (A.73)) and k (equa-
tion (A.92)) for m' equal to one. These functions are

, =bcos0 and '=b 2 sin- . (A.93)

A rigid body rotation, defined by

/awith a-=aa, +a 2 , A.'4
[QI al/a a2/a w a "2

will now be applied to the deformation field in equation (A.55). The deformation
field is now expressed in terms of U, T, equation (A.538), and k,equation (A.64),
as

(1y1(r, 0) = r"'(0) + o(rm )
a

y2h(r,9) = arm U(O)+ -r"' y(9)+o(r '),

a
or, using equation (A.93),

y,(rO) = r6'b2sin2 -+o (r
a2

(A.96)

y2(r, 9) =ar'sin 2 1) + o

Noting that the deformation field must be symmetric about the xl-axis for a
Mode I crack, it is determined that

a, = 0, a2 = a. and b, = 0 (A.97)
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The pressure field. as given by equation (A.27), will now be considered. The
equations for the determinant equation (A.28) and equilibrium, equations (A.291
and (A.31) can ';c manipu', -d to obtain

(PY2 PY2(A.98)

2 r O 5 a r

Given the leformation field in equation (A.96), this equation becomes

2Aib 2 Gr' o (r) arm-+k 2 (kp6' - m U) + o (r-+'-') (A.,99)

The boundary conditions in equation (A.34) provide

rkp(± 7-) = 2,[maU(±.)1-2r (A.100)

For both equations (A.99) and (A.100) to be satisfied, either k equals zero or p 0)
vinishes at 0 = ±,7r. It can be seen that

k < 1 - m (A.101)

Therefore, it is concluded that

(±)= 0 .(A.102)

The value of k will now be found. If k is less than 1/2, then the coefficient to
rm +k - 2 in equation (A.99) is given as

kpUr - mpU = 0 on [-r, r] (A.103)

This result, taken with the conclusion that p(±r) equals zero, implies that p()
would v:anish over the domain [-,r, -r]. Therefore,

k = 1/2

kpU- mpU = 2AL-G on [-7rlr] (A. 104)
a

p{±-r) = 0

From the above equation, p() becomes

9) 21 b2
-c) Cos - (A.105)

a 2
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The deformation and pressure fields can now be expressed in terms of polar coor-
,dinates from equations (A.96). (A.97), and (A.105),

Sin'- + or)

2/0
r) = ,rt/r sin-+o(r) (A.IS)2

pi r, 0) =- r 1 CO - + o(r'/ )
(1 2

The aniplitde -,instants are (z, ain b,. Stephenson inc[uded additional higher
,,rder ternLs in the dheformation field and repeated this analysis for a third time.

The details of this higher order analysis will not be given; the interested r,;,der is
r,,ferre, to reference [61. The final form of the deformation field is presented as

-/-,O)i ' 1 +sill -4os - + -1os
3,r/m-in - + -s

2 12 2 2 2

+F 2b( L 2
-r' [11 sin 0 3n ] ( 2)sin

/:2 39 b,-,' 01
(Lr sin - n -in

2 aL 2  2(z2  O~j

+ -,r~ [2 sin 0 - sin 21 + ok(r)

r,) -2/1L-r 2os- + 2pr(3 - ,os9) + o(r)(1 2 az2 r

Load amplitude constants are denoted bv a, b2 , ( 1, and di. To obtain an equivalent
form of the dheformation field, as derived by Knowles [5], the following substitilt ions
iii:-t 1w Illade.

(A. 108 1

d = ,./a
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The Cauchy stress field can be determined from (A.18). When the deformation
field in equation (A.107) is used to calculate the deformation gradient, equa-
tion (A.2), the leading terms of the stress field are

711 -b!(1,- cos6)
2 aS

722 a (A.109)
2r

Sb2 .
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Figure A.I: A Mode I crack in an infinite plate.



Appendix B

Determination of Load
Amplitude Constant, a, Under
the Assumptions of Small Scale
Nonlinearity

The nonlinear elastic deformation field for a Mode I crack in a Mooney-Rivlin
material as derived by Knowles [5) is

(2
yg (r, 0) = br sin 2 + lr31 2 cos 2 - COS2 a 2 3

(B.1)
.9 r3/ (  39 b2

y2(r, 0) = ar 1/ 2 sin-+ r 2 dsin 2 Vsin)

The unknown load amplitude constants are a, b, and d. In small scale nonlinearity.
the amplitude constant, a, can be determined as a function of the applied load
using the energy conservation line integral, J. A small tensile load is applied
at infinity as in Figure A.1. At the crack tip, as r -4 0, the deformation field
in equation (B.1) is found. This deformation field will be used to evaluate the
J-integral, where

J = Wdx2 - s,u,,1 ds) (B.2)

with the assumption that the J-integral is path independent for a suitable con-
tour. r, surrounding the crack tip. The circular contour, F, with radius, r, was
selected in the undeformed configuration, as shown in Figure B.1. The J-integral,
equation (B.2) will be evaluated from the bottom of the crack surface at 9 =

208
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parallel to the x, axis, to the top crack surface at 9 = -r. For this contour it is
noted that

dX2 = rcosOdO ,

ds = rd9

and
(0 cos = 0 (0-19M  sin 0 ( -'() (B.4)

The strain energy per unit undeformed volume, W, for a Moonev-Rivlin material
is

W = CIo (11 - 3) + Cot (12 - 3) (B.5)

where gi equals 2 (CIO + Co0 ). Referenced to the undeformed configuration, the
nominal traction vector. s,, is defined as

si = f,n, (B.6)

Here, n, is the outward unit normal in the nominal stress tensor, 'a, for an
incompressible material is given by

(71i = 2 (TV, + Il V12) F, - 2W 2B,kFki - PF.- (B.7)

The left Cauchy Green strain tensor, Bij , is

Bi = 1FFk• (B.8)

Finally, it is noted that
Fil = 61, + u,( = (B.9)

where u, represents the displacement field. The term F 1 refers to that Cartesian
component of the inverse of the deformation gradient. F,,. The arbitrary pressure.
p, is associated with the isochoric constraint.

In plane strain, I1 equals 12 and can expressed in terms of the deformation gradi-
ent,

I = I2 = Bij = F,,F., = tr(FFT ) . (B.10)

This relationship can be used to redefine W, (B.5), and o,1 , (B.7), as

W " (tr(FF T)-3) (B.11)

and
(7 , = 2 V IFj - p(F3 B.12)
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The J-integral can now be evaluated. First the deformation gradient is found from
the deformation field in equation (B.1),

30 bI ±[cos9-1]Fil = f Cos + cos +[Co

F12 = - Isin- +3sin- +-sine
2 2 J 2

(B.13)
F-b 2  30 (3d b'.1 a .

F21 =v' - sin -+ +- sin-- sin
L4a 2k 2a)/2i r) 2'

b2 30+(3d _b 2 )COS9+ a 9
F22 = v-/ ') CCOS--+ o + Cos-

I
4a - 2 2a 2 rf 2

The strain energy, W, and the nominal stress tensor, ar, in equations (B.11) and
(B.12) are determined from F 1 in equation (B.13). Taking the limit as r - 0, the
J-integral, equation (B.2), becomes

J = a2A Cos9 1(cos20- 1) dO (B.14)

Evaluation of the J-integral provides that

i ra 2pJ = rr2 (B.15)

4 -

In small scale nonlinearity, the stress intensity factor, Kt, is related to the J-integral
by

i = K2 (1 _ V 2 )  (B. 16)

E
Noting that v equals 1/2 for an incompressible material,

7ra 2l K' 3
=ap ---- . (B.17)

4 E 4
Here, Kt is defined as

K, = av"l , (B.18)

and consequently,
a=-v/i. (B.19)

This result agrees with that obtained by Knowles [5] and Stephensen [6]. The
value of the load amplitude constant, a, is directly proportional to the applied
load. It is also a function of the crack length and the shear modulus at infinitesimal
deformations. This expression for a is valid only under the assumptions of small
scale nonlinearity.
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K 2

r 

r 

n jl

Figure B.1: Contour used to evaluate the J-integral.
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Experimental Data
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Table C.1: Specimen M - 1.

A (cm) Load(N) A (cm) Load(N)
0.000 0.0 0.610 264.6
0.010 20.9 0.660 280.2
0.020 23.3 0.711 302.4
0.030 24.4 0.762 313.5
0.041 38.7 0.787 320.2
0.061 57.8 1.041 373.6
0.081 72.9 1.295 429.2
0.107 84.5 1.372 444.8
0.127 96.0 1.626 489.2
0.147 106.7 1.895 551.5
0.170 116.5 2.149 604.9
0.191 125.8 2.449 662.7
0.211 134.7 2.703 713.9
0.234 143.6 2.972 773.9
0.254 151.6 3.226 827.3
0.274 159.2 3.495 876.2
0.297 164.5 3.749 925.1
0.317 174.3 4.003 987.4
0.338 181.4 4.257 1023.0
0.361 189.0 4.511 1076.4
0.381 195.7 4.587 1107.5
0.401 202.3 4.714 1129.7
0.424 209.0 4.968 1178.7
0.444 217.9 5.207 1223.2
0.465 221.9 5.222 1223.2
0.488 226.8 5.232 1227.6
0.508 232.6 5.283 1240.9
0.528 237.9 5.309 1245.4
0.559 249.0 5.334 1232.1
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Table C.2: Specimen If - 2.

A(cm) Load(N) CMOD(cm) A(cm) Load(N) CMOD(cm)
0.000 0.0 - 1.463 436.7 0.819
0.076 56.2 0.024 1.516 448.3 0.847
0.130 83.4 0.050 1.570 460.3 0.877
0.160 104.7 0.077 1.628 471.9 0.910
0.218 129.1 0.107 1.676 482.6 0.937
0.241 148.9 0.120 1.725 492.8 0.966
0.274 0.161 1.775 503.9 1.002
0.381 175.6 0.179 1.824 514.6 1.026
0.437 197.9 0.224 1.882 525.3 1.047
0.480 211.7 0.249 1.943 537.7 1.093
0.516 221.9 0.269 1.994 548.8 1.127
0.559 - 0.283 2.197 583.5 1.221
0.597 241.5 0.302 2.256 591.5 1.274
0.640 251,7 0.335 2.314 600.4 1.308
0.673 260.6 0.354 2.367 606.7 1.350
0.706 269.5 0.373 2.446 620.9 1.392
0.742 277.5 0.389 2.487 628.9 1.411
0.782 291.3 0.431 2.543 639.1 1.453
0.846 302.4 0.455 2.588 647.6 1.490
0.897 314.9 0.479 2.642 656.5 1.513
0.940 322.0 0.509 2.705 670.7 1.546
0.996 336.2 0.545 2.751 680.1 1.575
1.031 345.1 0.565 2.819 - 1.606
1.085 354.9 0.599 2.873 707.6 1.636
1.125 363.8 0.621 2.926 719.2 1.662
1.166 373.1 0.646 3.030 741.9 1.711
1.222 384.3 0.671 3.086 755.2 1.740
1.262 394.5 0.706 3.147 768.1 1.770
1.354 412.3 0.755 3.238 784.6 1.830
1.402 424.3 0.798 3.282 797.0 1.829
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Table C.2: Specimen M - 2 (continued).

A(cm) Load(N). CMOD(cm)
3.373 814.8 1.831
3.442 829.1 1.892
3.500 843.3 1.925
3.556 857.5 1.887
3.627 871.8 1.988
3.696 886.0 1.996
3.769 903.8 2.040
3.843 918.0 2.069

3.922 926.9 2.096
3.978 930.5 2.153
4.064 932.3 2.206

4.145 928.7 2.285
4.216 946.5 2.371

4.270 918.0 2.412
4.341 950.0 2.438
4.425 969.6 2.584
4.491 978.5 2.591
4.572 996.3 2.626
4.630 1010.5 2.668
4.704 1021.2 2.722
4.762 1037.2 2.791
4.831 1049.7 2.844
4.910 1062.1 2.888
5.062 1090.6 2.965
5.138 1078.2 3.022
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Table C.3: Specimen S - 1.

A(cm) Load(N) CMOD(cm) A(cm) Load(N) CMOD(cm)
0.000 0.0 - 2.235 - 1.309
0.064 33.8 - 2.286 622.7
0.095 48.9 - 2.413 - 1.321
0.127 66.7 - 2.527 - 1.360
0.147 - 0.066 2.540 - 1.333
0.191 102.3 - 2.629 - 1.308
0.254 124.5 0.105 2.667 693.8

0.381 171.2 - 2.705 - 1.298
0.394 - 0.140 2.807 - 1.316
0.533 - 0.162 2.908 - 1,365
0.572 - 0.100 2.943 - 1.408
0.648 - 0.123 3.048 765.0

0.762 284.6 - 3.112 - 1.426
0.775 - 0.209 3.213 - 1.507
0.902 - 0.291 A.302 - 1.558
0.965 - 0.351 3.391 - 1.595
1.041 - 0.410 3.429 840.6

1.143 378.0 - 3.518 - 1.609
1.156 - 0.469 3.594 - 1.643
1.232 - 0.525 3.619 885.1
1.308 - 0.597 3.715 778.4
1.410 - 0.631 3.810 813.9 -

1.473 - 0.671 4.013 - 2.056
1.524 462.5 - 4.128 - 2.589
1.537 - 0.692 4.191 920.7

1.613 - 0.750 4.216 - 2.636
1.689 - 0.773 4.381 2.159
1.753 - 0.822 4.483 - 2.286
1.854 - 0.880 4.572 996.3 2.413
1.905 542.6 - 4.674 - 2.413
1.956 - 0.916 4.813 2.540
2.019 0.940 4.915 - 2.540
2.108 1.234 4.953 1085.3 -

2.172 1.273
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Table C.4: Specimen S - 2 Loading.

A(cm) Load(N) CMOD(cm)
0.000 0.0 0.010
0.089 71.1 0.076
0.147 102.3 0.074
0.203 120.- 0.138
0.267 142.3 0.164
0.317 155.6 0.152
0.356 167.2 0.175
0.406 177.9 0.183
0.470 195.7 0.229
0.521 209.0 0.259
0.597 229.0 0.315
0.660 241.0 0.335
0.732 255.7 0.359
0.813 273.5 0.406
0.864 284.6 0.431
0.914 295.3 0.461
0.973 306.9 0.500
1.029 317.5 0.525
1.079 326.9 0.570
1.156 342.0 0.598
1.232 354.9 0.632
1.300 366.9 0.669
1.364 379.8 0.698
1.422 388.7 0.742
1.504 400.3 0.777
1.562 414.1 0.844
1.664 430.1 0.348
1.714 442.3 0.815
1.819 460.8 0.931
1.892 472.8 0.970
1.956 484.3 1.005
2.019 495.5 1.032
2.101 510.1 1.078
2.172 522.2 1.091
2.248 535.5 1.144
2.311 547.9 1.176
2.400 563.1 1.224
2.515 580.0 1.226
2.642 609.3 1.331
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Table C.5: Specimen S - 2 Unloading.

I(cm) Load(N) CMOD(cm)
2.591 475.0 1.331
2.502 453.3 1.293
2.438 435.5 1.276
2.349 - 1.214
2.248 383.4 1.181
2.172 360.3 1.292
2.090 343.4 1.257
1.664 258.0 0.889
1.600 249.5 0.869
1.537 237.5 0.824
1.436 229.1 0.792
1.448 221.5 0.776
1.397 213.9 0.747
1.346 206.8 0.730
1.308 199.7 0.684
1.245 189.5 0.659
1.168 179.7 0.599
1.156 173.0 0.620
1.079 164.6 0.567
1.034 157.5 0.546
1.003 151.2 0.508
0.940 142.3 0.468

0.902 136.6 0.469
0.851 126.8 0.415
0.787 115.7 0.381
0.737 107.6

0.698 101.0 0.321
0.610 82.7 0.277
0.589 73.4 0.234
0.503 63.2 0.226
0.462 55.2 0.200
0.406 41.4 0.194
0.368 34.7 0.141
0.165 12.4
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Table C.6: Specimen S - 2 Reloading.

_X(cm) Load(N) CMOD(cm) A(cm) Load(N) CMOD(cm)

0.000 0.0 1.478 342.9 0.887
0.076 38.3 - 1.537 353.6 0.916

0.122 63.1 0.069 1.603 364.2 0.947
0.157 76.1 0.092 1.664 375.4 0.983

0.185 77.8 0.109 1.737 389.2 1.026
0.244 103.6 0.140 1.791 398.9 1.046
0.269 115.6 0.170 1.336 408.7 1.077
0.351 129.5 0.185 1.900 419.0 1.115
0.386 137.8 0.208 1.920 431.4 1.133

0.437 149.6 0.243 2.014 443.9 1.166

0.470 157.4 0.262 2.075 455.4 1.189
0.508 166.3 0.292 2.144 470.1 1.215
0.572 176.1 0.283 2.215 484.8 1.253

0.648 191.7 0.362 2.276 495.0 1.281
0.653 198.8 0.394 2.332 510.1 1.312

0.724 206.8 0.411 2.395 524.8 1.346

0.762 215.7 0.450 2.469 542.6 1.358

0.813 223.7 0.485 2.532 561.7 1.390
0.364 231.7 0.509 2.611 577.3 1.420

0.902 241.5 0.552 2.680 595.1 1.449
0.958 250.8 0.574 2.781 623.6 1.495

1.016 258.4 0.595 2.908 654.7 1.539

1.069 269.1 0.640 2.941 672.0 1.586

1.123 276.2 0.673 3.061 686.7 1.605
1.161 285.1 0.693 3.178 707.6 1.648

1.212 294.4 0.728 3.251 720.1 1.679

1.260 303.8 0.764 3.330 734.3 1.703

1.333 315.3 0.791 3.393 743.2 1.727

1.384 324.2 0.832 3.459 753.0 1.767
1.430 331.3 0.864 3.548 764.1 1.814
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Table C.6: Specimen S - 2 Reloading (continued).

A(cm) Load(N) CMOD(cm)
3.711 766.8 1.946
3.780 777.9 1.995
3.879 799.7 2.030
3.950 811.3 2.070
4.021 827.3 2.092
4.097 841.5 2.132
4.199 855.8 2.139
4.280 878.0 2.214
4.351 893.1 2.230
4.458 910.9 2.280
4.509 923.4 2.305

4.575 935.8 2.309
4.646 949.6 2.313
4.712 962.5 2.412
4.806 982.1 2.458
4.884 998.1 2.484
4.976 1010.5 2.527
5.062 1037.2 2.560
5.138 1053.2 2.593
5.222 1071.0 2.628
5.380 1099.5 2.689
5.464 1099.5 2.737
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Table C.7: Specimen S - 3.

A(cm) Load(N) CMOD(cm) A(cm) Load(N) CMOD(cm)
0.000 0.0 - 1.316 321.5 0.678
0.051 42.1 0.020 1.356 327.8 0.715
0.089 60.9 0.039 1.410 334.0 0.737
0.140 76.5 0.055 1.455 344.2 0.766
0.206 96.9 0.100 1.491 352.2 0.796
0.239 108.9 0.119 1.544 359.8 0.820
0.279 120.1 0.140 1.585 367.4 0.846
0.328 130.7 0.156 1.659 379.8 0.864
0.386 145.4 0.191 1.699 386.9 0.896
0.439 156.5 0.244 1.786 401.2 0.935
0.498 168.5 - 1.844 411.8 0.959
0.538 177.9 0.265 1.890 419.0 0.988
0.592 189.0 0.290 1.930 426.1 1.012
0.625 196.1 0.308 1.956 433.6 1.026
0.660 202.8 0.319 2.022 440.8 1.103
0.698 210.8 0.347 2.065 447.9 1.085
0.747 - 0.373 2.126 456.3 1.109
0.762 225.0 0.391 2.169 470.1 1.118
0.825 234.4 0.411 2.220 470.1 1.146
0.859 241.0 0.445 2.266 476.8 1.171
0.902 - 0.461 2.304 483.0 1.190
0.930 253.5 0.481 2.375 498.1 1.222
0.978 - 0.505 2.421 - 1.260
1.021 269.5 0.550 2.469 505.7 1.283
1.059 276.6 0.549 2.537 519.0 1.330
1.097 283.7 0.588 2.591 525.3 1.356
1.143 289.5 0.583 2.637 534.2 1.379
1.199 300.6 0.626 2.700 545.3 1.394
1.229 '06.4 0.649 2.766 556.0 1.431
1.270 313.1 0.665 2.822 564.9 1.447
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Table C.7: Specimen S - 3 (continued).

. (cm) Load(N) CMOD(cm)
2.873 573.7 1.476

2.926 582.2 1.496

2.969 589.8 1.515
3.142 619.6 1.586
3.200 628.9 1.600
3 234 638.2 1.632
3.315 647.6 1.652
3.365 654.7 1.673
3.426 661.8 1.700
3.475 - 1.727

3.518 675.6 1.761

3.589 685.4 1.799
3.635 691.6 1.819
3.696 700.5 1.829

3.767 709.9 1.882
3.807 717.9 1.903
3.861 726.8 1.925

3.924 734.8 1.960
3.973 744.1 1.989

4.039 756.1 2.000
4.107 767.7 2.032
4.216 779.2 2.088
4.290 788.1 2.132

4.348 800.6 2.171
4.425 802.4 2.203
4.514 816.6 2.278
4.597 834.4 2.324

4.679 850.4 2.353
4.742 859.3 2.371
4.821 869.5 2.410

4.961 889.6 2.441
5.210 907.3 2.654
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Table C.8: Specimen U - 1.

A(cm) Load(N) CMOD(cm)
0.000 0.0 0.013
0.102 109.8 0.032
0.152 150.3 0.066
0.203 183.2 0.081
0.244 203.2 0.128
0.279 222.4 0.155
0.330 249.0 0.166
0.394 - 0.203

0.432 288.6 0.231
0.483 313.1 0.258
0.533 335.8 0.295
0.572 353.6 0,327
0.648 374.5 0.359
0.686 389.6 0.380
0.732 400.3 0.406
0.795 426.1 0.436

0.851 445.6 0.475
0.902 460.3 0.505
0.940 477.2 0.535
0.978 491.5 0.541
1.036 510.6 0.574
1.079 528.4 0.610
1.118 538.2 0.630
1.163 554.6 0.663
1.224 573.7 0.685
1.265 588.9 0.706
1.321 607.6 0.737
1.384 618.7 0.782
1.425 630.7 0.810
1.466 641.8 0.840
1.514 655.1 0.865
1.570 674.7 0.897
1.631 692.1 0.935
1.676 712.5 0.989
1.735 725.4 1.007
1.791 743.7 1.064
1.849 765.9 1.092
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